Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T09:43:00.950Z Has data issue: false hasContentIssue false

Influence of Point Defects on GaAs Devices

Published online by Cambridge University Press:  16 February 2011

David C. Look*
Affiliation:
University Research Center, Wright State University, Dayton, OH 45435
Get access

Abstract

From electron-irriadiation studies, it is known that point defects can strongly affect the electrical properties of GaAs-based MESFET's, MODFET's, solar cells, resonant-tunneling diodes, MIMIC circuits and other devices. As an example, 1 × 1016 cm−2, 1 MeV electrons reduce the transconductance in a 1 μm by 200 μm MESFET by nearly an order of magnitude. Fortunately, annealing at 350 °C for 10 min. can largely restore the device performance, although not without some adverse effects. Point defects, or simple point defect complexes, can also exist in as-grown GaAs and affect devices in several different ways. For example, an As-rich stoichiometry can lead to an abundance of Ga vacancies, and thus to a higher Si donor activation in implanted MESFET devices; however, it can also promote an increase in unwanted impurities which sit on the Ga site. As another example, extremely high (> 3 × 1019 cm−3 ) concentrations of As arntisites, which are found in MBE GaAs grown at 200°C, lead to very unusual electrical and optical properties, and make possible a highly useful buffer material anid a very fast photoconductive switch. However, there are also adverse effects here, such as slow-transients in some MODFET devices, which may result from defect diffusion. Thus, the effects of point defects in GaAs devices must be understood.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. AuCoin, T.R. and Savage, R.O., in Gallium Arsenide Technology, edited by Ferry, D. (Howard W. Sams, Indianapolis, 1985) p. 47.Google Scholar
2. Look, D.C., in Semi-Insulating III-V Materials. Malmso 1988, edited by Grossman, G. and Ledebo, L. (Adam Hilger, Bristol, 1988) p. 1.Google Scholar
3. Jaros, M. and Brand, S.,Phys. Rev. B 14, 4494 (1976).10.1103/PhysRevB.14.4494Google Scholar
4. Sankey, O.F. and Dow, J.D., Appl. Phys. Lett. 38, 685 (1981).10.1063/1.92479Google Scholar
5. Wosinski, T. and Figielski, T., Inst. Phys. Conf. Ser. 104, 151 (1989).Google Scholar
6. Look, D.C. and Sizelove, J.R., J. Appl. Phys. 62, 3660 (1987).10.1063/1.339246Google Scholar
7. Meulenberg, A., Dozier, C.M., Anderson, W.T., Mittleman, S.D., Zuglich, M.H., asl Caefer, C.E., IEEE Truns. Nucl. Sci. 34, 1745 (1987).10.1109/TNS.1987.4337548Google Scholar
8. Loescher, D.H. and Pyo, M.L., Proc. 1989 GOMAC Conf., 393 (1989).Google Scholar
9. Eutsymiou, P.C., Baunbury, P.C., Papaioannou, G.J., and Zandas, G.E., Phys. Stat. Sol.(a) 116, K133 (1989).10.1002/pssa.2211160172Google Scholar
10. Jansousek, B.K., Yamuda, W.E., Krantz, R.J., and Bloss, W.L., J. Appl. Phys. 63, 1678 (1988).10.1063/1.339901Google Scholar
11. Meulenberg, A.E., Hung, H-L.A., Peterson, K.E., and Anderson, W.T., IEEE Truns. Electron. Dev. ED–35, 2125 (1988).10.1109/16.8786Google Scholar
12. Brudnyi, V.N., Gaman, V.I., and Diamond, V.M., Solid-State Electronics 31, 1093 (1988).10.1016/0038-1101(88)90411-XGoogle Scholar
13. Loo, R.Y., Kamath, G.S., and Li, S.S., IEEE Trans. Electron Dev. 37, 485 (1990).10.1109/16.46387Google Scholar
14. Mao, J.M., Zlou, J.M., Zhang, R.L., Jin, W.M., Bao, C.L., arsd Huang, Y., Appl. Phys. Lett. 56, 548 (1990).10.1063/1.102741Google Scholar
15. Barry, A.L., Wojcik, R., ansi MacDiarmid, A.L., IEEE Trans. Nucl. Sci. 36, 2400 (1989).10.1109/23.45454Google Scholar
16. Mumford, P. (unspublished).Google Scholar
17. Look, D.C., Walters, D.C., Kemerley, R.T., King, J.M., Mier, M.G., Sewell, J.S., and Sizelove, J.S., J. Electronic Mat. 18, 487 (1989).10.1007/BF02657777Google Scholar
18. Hyuga, F., Watanabe, K., Osaka, J., and Hoshikawa, K., Appl. Phys. Lett. 48, 1742 (1986).10.1063/1.96821Google Scholar
19. Klein, P.B., Nordquist, P.E.R., and Siebermann, P.G., J. Appl. Phys. 51, 4861 (1980).10.1063/1.328321Google Scholar
20. Look, D.C. and Pomrenke, G.S., J. Appl. Phys. 54, 3249 (1983).10.1063/1.332487Google Scholar
21. Smith, F.W., Calawa, A.R., Chen, C-L., Manfra, M.J., and Mahoney, L.J., IEEE ELectron Dev. Lett. EDL–9, 77 (1988).10.1109/55.2046Google Scholar
22. Look, D.C., Walters, D.C., Manasreh, M.O., Sizelove, J.R., Stutz, C.E., and Evans, K.R., Phys. Rev. B (to be published).Google Scholar
23. Kaminska, M., Weber, E.R., Liliental-Weber, Z., Leon, R., and Rek, Z.U., J. Vac. Sci. Technol. B 7, 710 (1989).10.1116/1.584630Google Scholar
24. Lin, B. J-F., Kocot, C.P., Mars, D.E., and Jaeger, R., IEEE Trans. On Electron Dev. ED–37, 46 (1990).10.1109/16.43799Google Scholar