Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T01:10:21.689Z Has data issue: false hasContentIssue false

Influence of RTP on Vacancy Concentrations

Published online by Cambridge University Press:  10 February 2011

M. JACOB
Affiliation:
Fraunhofer-Institut für Integrierte Schaltungen, Bauelementetechnologie, Schottkystrasse 10, 91058 Erlangen, Germany
P. Pichler
Affiliation:
Fraunhofer-Institut für Integrierte Schaltungen, Bauelementetechnologie, Schottkystrasse 10, 91058 Erlangen, Germany
M. Wohs
Affiliation:
Lehrstuhl für Elektronische Bauelemente, Universität Erlangen-Nürnberg, Cauerstrasse 6, 91058 Erlangen, Germany
H. Ryssel
Affiliation:
Fraunhofer-Institut für Integrierte Schaltungen, Bauelementetechnologie, Schottkystrasse 10, 91058 Erlangen, Germany Lehrstuhl für Elektronische Bauelemente, Universität Erlangen-Nürnberg, Cauerstrasse 6, 91058 Erlangen, Germany
R. Falster
Affiliation:
MEMC Electronic Materials SpA, Viale Gherzi 31, 28100 Novara, Italy
Get access

Abstract

The increase and reduction of the vacancy concentration by rapid thermal processing (RTP) was investigated by platinum diffusion. Direct experimental evidence is presented for the consumption of vacancies during oxidation and for the introduction of vacancies during processing in ammonia and nitrogen. These results confirm the indirect conclusions from dopant diffusion and from the growth and shrinkage of extended defects. In addition, it was possible to establish an upper limit for the equilibrium concentration of vacancies at 1180 °C which is lower than previously reported values.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mizuo, S. and Higuchi, H., Jpn. J. Appl. Phys. 20, 739 (1981).Google Scholar
2. Antoniadis, D. A. and Moskowitz, I., J. Appl. Phys. 53, 6788 (1982).Google Scholar
3. Mizuo, S., Kusaka, T., Shintani, A., Nanba, M., and Higuchi, H., J. Appl. Phys. 54, 3860 (1983).Google Scholar
4. Fahey, P., Barbuscia, G., Moslehi, M., and Dutton, R. W., Appl. Phys. Lett. 46, 784 (1985).Google Scholar
5. Kook, T. and Jacodine, R. J., Mat. Res. Soc. Symp. Proc. 36: Impurity Diffusion and Gettering in Semiconductors, 83 (1985).Google Scholar
6. Zimmermann, H., Appl. Phys. Lett. 59, 3133 (1991).Google Scholar
7. Zimmermann, H. and Ryssel, H., Phys. Rev. B 44, 9064 (1991).Google Scholar
8. Frank, F. C. and Turnbull, D., Phys. Rev. 104, 617 (1956).Google Scholar
9. Jacob, M., Pichler, P., Ryssel, H., and Falster, R., J. Appl. Phys. 82, 182 (1997).Google Scholar
10. Ling, Z.-M., Dupas, L. H., and De Meyer, K. M., J. Electronic Materials 21, 523 (1992).Google Scholar
11. Reisman, A., Nicollian, E. H., Williams, C. K., and Merz, C. J., J. Electronic Materials 16, 45 (1987).Google Scholar
12. Moslehi, M. M. and Saraswat, K. C., IEEE Trans. Electron Devices ED-32, 106 (1985).Google Scholar
13. Jacob, M., Pichler, P., Ryssel, H., Gambaro, D., and Falster, R.: ESSDERC'95 ed. by de Graaff, H. C. and van Kranenburg, H., Gif-sur-Yvette: Edition Frontières, 203 (1995).Google Scholar
14. Voronkov, V. V., private communication.Google Scholar
15. Sinno, T., Brown, R. A., von Ammon, W., and Dornberger, E., Appl. Phys. Lett. 70, 2250 (1997).Google Scholar
16. Chakravarthi, S. and Dunham, S. T., Mat. Res. Soc. Symp. Proc. 469: Defects and Diffusion in Silicon Processing (1997).Google Scholar
17. Falster, R., Pagani, M., Gambaro, D., Cornara, M., Olmo, M., Ferrero, G., Pichler, P., and Jacob, M., Solid State Phenomena 57–58, 129 (1997).Google Scholar
18. Jacob, M., Pichler, P., Ryssel, H., Falster, R., Cornara, M., Gambaro, D., Olmo, M., and Pagani, M., Solid State Phenomena 57–58, 349 (1997).Google Scholar