Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T10:14:49.285Z Has data issue: false hasContentIssue false

Influence of Self-Assembled Organic Thin Film Monolayer on Ambient Copper Surfaces Oxidation

Published online by Cambridge University Press:  01 February 2011

Ilia Platzman
Affiliation:
ilia1509@tx.technion.ac.il, Technion, Chemical Engineering, Technion City, Haifa, 32000, Israel, +972-4-829-4238, +972-4-829-2850
Hossam Haick
Affiliation:
hhossam@tx.technion.ac.il, Technion, Chemical Engineering, Technion City, Haifa, 32000, Israel
Rina Tannenbaum
Affiliation:
rinatan@technion.ac.il, Technion, Chemical Engineering, Technion City, Haifa, 32000, Israel
Get access

Abstract

Qualitative and quantitative studies of the oxidation of molecularly modified polycrystalline copper (Cu) thin films upon exposure to ambient air conditions for long periods (on the order of several months) are reported in this work. Thin films of Cu, prepared by thermal evaporation, were analyzed by means of x-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) to gain an understanding on the growth mechanism of oxide on bare and molecularly modified Cu surfaces. The results from all techniques points for an unstable behavior of bare Cu surfaces characterized in very fast and continuous growth of Cu oxide layers during first 60 days of exposure to overall 6 nm oxide thickness. However, Cu films prepared under the same conditions, but covered with a self-assembled organic thin film layer of 1,4-phenylene diisocyanide (PDI) molecules adsorbed from solution, showed a decrease in the thickness of the copper oxide layer on the Cu surface. Our findings imply that chemisorbed PDI monolayers can serve as protective coatings for Cu.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Whelan, C.; Kinsella, M.; Carbonell, L.; Ho, H.; Maex, K. Microelectron. Eng. 2003, 70, 551.10.1016/S0167-9317(03)00283-1Google Scholar
2 Iguchi, K.; Tachibana, A. Appl. Surf. Sci. 2000, 159, 167.10.1016/S0169-4332(00)00111-2Google Scholar
3 Ho, P.; Kwok, T. Rep. Prog. Phys. 1989, 52, 301.10.1088/0034-4885/52/3/002Google Scholar
4 Suzuki, S.; Ihikawa, Y.; Isshiki, M.; Waseda, Y. Mater. Trans. JIM. 1997, 38, 1004.10.2320/matertrans1989.38.1004Google Scholar
5 Chawla, S.; Ricket, B.; Sankarrama, N.; Payer, J. Corr. Sci. 1992, 3, 1617.10.1016/0010-938X(92)90038-5Google Scholar
6 Iijima, J.; Lim, J.; Hong, S.; Suzuki, S.; Mimura, K.; Isshiki, M. Appl. Surf. Sci. 2006, 253, 2825.10.1016/j.apsusc.2006.05.063Google Scholar
7 Cano, E.; Torres, C.; Bastidas, J. Mater. and Corr. 2001, 5, 667.10.1002/1521-4176(200109)52:9<667::AID-MACO667>3.0.CO;2-H3.0.CO;2-H>Google Scholar
8 Serine, N.; Serin, T.; Karadeniz, S. Semicond. Sci. Technol. 2002, 17, 60.10.1088/0268-1242/17/1/310Google Scholar
9 Cho, J.; Paik, K.; Kim, Y. IEEE Trans. Compon. Packag. Manuf. Technol. 1997, B20, 167.Google Scholar
10 Griffin, A.; Hernàndez, S.; Brotzen, F.; Dunn, C. J. Electrochem. Soc. 1994, 141, 807.10.1149/1.2054815Google Scholar
11 Chuang, C.; Aoh, J.; Din, R. Microelectr. Reliabil. 2006, 46, 449.10.1016/j.microrel.2005.01.010Google Scholar
12 Cabrera, N.; Mott, N. Rep. Prog. Phys. 1948-1949, 12, 163.10.1088/0034-4885/12/1/308Google Scholar
13 Mott, N. Trans. Farad. Soc. 1939, 35, 1175.10.1039/tf9393501175Google Scholar
14 Platzman, I.; Brener, R.; Haick, H.; Tannenbaum, R. J. Phys. Chem. C. 2008, 112(4), 1101.Google Scholar
15 Stewart, K.; Zhang, J.; Li, S.; Carter, W.; Gewirth, A. J. Elecrochem. Soc. 2007, 154, D57.10.1149/1.2393013Google Scholar
16 Cohen, S.; Brusic, V.; Kaufman, G.; Frankel, G.; Motakef, S.; Rush, B. J. Vac. Sci. Technol. A. 1990, 8(3), 2417.10.1116/1.576708Google Scholar
17 Zachary, D.; Schultz, M.; White, J.; Gewirth, A. Anal. Chem. 2004, 76, 604.Google Scholar
18 Feng, Y.; Teo, W.; Siow, K.; Gao, Z.; Tan, K.; Hsieh, A. J. Electrochem. Soc. 1997, 144(1), 55.10.1149/1.1837365Google Scholar
19 Jennings, G.; Munro, J.; Laibinis, P. Adv. Mater. 1999, 11, 1000.Google Scholar
20 Sinapi, F.; Lejeune, I.; Delhalle, J.; Mekhalif, Z. Electroch. Acta, 2007, 52, 5182.10.1016/j.electacta.2006.12.087Google Scholar
21 Hutt, D.; Liu, C. Appl. Surf. Sci. 2005, 252, 400.10.1016/j.apsusc.2005.01.019Google Scholar
22 Pranger, L.; Tannenbaum, R.; J. Coll. Inter. Sci. 2005, 292, 71.10.1016/j.jcis.2005.05.044Google Scholar
23 Pranger, L.; Goldstein, A.; Tannenbaum, R. Langmuir, 2005, 21, 5396.Google Scholar
24 Heiser, T.; Mesli, A. Appl. Phys. A. 1993, 57, 325.10.1007/BF00332285Google Scholar
25 Yamamoto, Y. Coord. Chem. Rev. 1980, 32, 193.Google Scholar