Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T10:06:57.508Z Has data issue: false hasContentIssue false

Influence of size variation on the strain distribution in YSZ membranes on Si substrates

Published online by Cambridge University Press:  15 January 2013

Florian Kuhl
Affiliation:
I. Physikalisches Institut, Justus-Liebig-Universität, Gießen, Germany.
Markus Piechotka
Affiliation:
I. Physikalisches Institut, Justus-Liebig-Universität, Gießen, Germany.
Daniel Reppin
Affiliation:
I. Physikalisches Institut, Justus-Liebig-Universität, Gießen, Germany.
Torsten Henning
Affiliation:
I. Physikalisches Institut, Justus-Liebig-Universität, Gießen, Germany.
Juergen Janek
Affiliation:
Physikalisch-Chemisches Institut, Justus-Liebig-Universität, Gießen, Germany.
Peter J. Klar
Affiliation:
I. Physikalisches Institut, Justus-Liebig-Universität, Gießen, Germany.
Get access

Abstract

The oxygen conductor yttria-stabilized-zirconia (YSZ) is widely used in miniaturized solid oxide fuel cells (µSOFC) and may be suitable for solid state ion emitter applications e.g. as miniaturized ion engines for electric propulsion. Since the YSZ films are not completely free of stress during the growth, cracks in fabricated free-standing membranes are often observed.

YSZ thin films were deposited on silicon substrates by radio frequency sputtering. Free-standing YSZ membranes were fabricated by partially removing the Si substrate by anisotropic wet-chemical etching using different masking patterns defined by electron beam lithography. We show how different sizes and etching conditions influence the strain in the fabricated membranes. To characterize these membranes we used optical microscopy and scanning electron microscopy.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Heiroth, S. et al. ., Solid State Ionics 191, 1223 (2011).CrossRefGoogle Scholar
Evans, A. et al. ., J. Power Sources 194, 119129 (2009).CrossRefGoogle Scholar
Muecke, U.P. et al. ., Adv. Funct. Mater, 18, 31583168 (2008).CrossRefGoogle Scholar
Huetter, A. Bieberle, et al. ., J. Power Sources 177, 123130 (2008).CrossRefGoogle Scholar
Evans, A. et al. ., Monatsh. Chem. 140, 975983 (2009).CrossRefGoogle Scholar
Rey-Mermet, S. and Muralt, P., Solid State Ionics 179, 14971500 (2008).CrossRefGoogle Scholar
Jasinski, P., Microelectron. Int. 25 (2), 4248 (2008).CrossRefGoogle Scholar
Shim, J.H. et al. ., Chem. Mater. 19, 38503854 (2007).CrossRefGoogle Scholar
Kwon, C.W. et al. ., Adv. Fund. Mater. 21, 11541159 (2011).CrossRefGoogle Scholar
Su, P.-C. et al. ., Nano Lett. 8 (8), 22892292 (2008).CrossRefGoogle Scholar
Kerman, K., Lai, B.-K., and Ramanathan, S., J. Power Sources 202, 120125 (2012).CrossRefGoogle Scholar
Huang, H. et al. ., J. Electrochem. Soc. 154 (1), B20B24 (2007).CrossRefGoogle Scholar
Baertsch, C.D. et al. ., J. Mater. Res. 19 (9), 26042615 (2004).CrossRefGoogle Scholar
ICDD data, pdf number 00-042-1164.Google Scholar
ICDD data, pdf number 00-027-0997.Google Scholar
ICDD data, pdf number 00-037-1484.Google Scholar
ICDD data, pdf number 00-027-1402.Google Scholar