Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T08:34:11.447Z Has data issue: false hasContentIssue false

Influence of Stress on Thermoelectric Properties of Antimony Telluride

Published online by Cambridge University Press:  01 February 2011

Gerald D. Mahan
Affiliation:
Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
Gun Sang Jeon
Affiliation:
Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
T. Thonhauser
Affiliation:
Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
Get access

Abstract

We present first-principles calculation for the behavior of antimony telluride under stress. We focus on the calculation of transport properties for pure Sb2Te3 and the investigation of stress-induced defects. Our transport calculations were done within first-principles using the linearized-augmented plane-wave method, where we first calculated the transport distribution for several stress conditions. Next, using these stress dependent transport distributions, we derived the stress dependence of the electrical conductivity, the Seebeck coefficient, and the power factor. Our calculations for the stress-induced defects were done utilizing a pseu-dopotential method and confining ourselves to the antisite defect. In all cases, our results are in good agreement with experimentally obtained data. Furthermore, we found that hydrostatic pressure does not improve the power factor, while, on the other hand, a large increase under uniaxial stress can be observed. Also, both hydrostatic pressure and uniaxial stress are found to lower the formation energies of the antisite defects, suggesting a structural transition at high pressures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Goldsmid, H. J., Electronic Refrigeration, Pion, London (1986).Google Scholar
[2] Mahan, G. D., Solid State Phys. 51, 81 (1998).Google Scholar
[3] Di, F. J. Salvo, Science 285, 703 (1999).Google Scholar
[4] Tritt, T.M., Science 283, 804 (1999).Google Scholar
[5] Thonhauser, T., Scheidemantel, T. J., Sofo, J. O., Badding, J. V., and Mahan, G. D., Phys. Rev. B 68, 85201 (2003).Google Scholar
[6] Jones, C. D.W., Regan, K. A., and DiSalvo, F. J., Phys. Rev. B 58, 16057 (1998).Google Scholar
[7] Itskevich, E. S., Kashirskaya, L. M., and Kraidenov, V. F., Semiconductors 31, 276 (1996).Google Scholar
[8] Polvani, D. A., Meng, J. F., Chandra Shekar, N. V., Sharp, J., and Badding, J. V., Chem. Mater. 13, 2068 (2001).Google Scholar
[9] Scheidemantel, T. J., Sofo, J. O., Thonhauser, T., and Badding, J. V., Phys. Rev. B 68, 125 210 (2003).Google Scholar
[10] Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., and Luitz, J., WIEN2k, An Augmented Plane Wave + Local Orbitals Programm for Calculating Crystal Properties, Schwarz, K., Techn. Universität Wien, ISBN 3–9501031–0–4, Austria (2001).Google Scholar
[11] Börnstein, Landolt, New Series, Group III, Vol. 17f, edited by Madelung, O., Schulz, M., and Weiss, H., Springer, New York (1983).Google Scholar
[12] Miller, G. R. and Li, C., J. Phys. Chem. Solids 26, 173 (1965).Google Scholar
[13] Horák, J., Čermák, K. and Koudelka, L., J. Phys. Chem. Solids 47, 805 (1986).Google Scholar
[14] Horák, J., Drašar, Č., Novotný, R., Karamazov, S., and Lošták, S., Phys. Stat. Sol. 149, 549 (1995).Google Scholar
[15] Horák, J., Starý, Z., and Klikorka, J., Phys. Stat. Sol. 147, 501 (1988).Google Scholar
[16] Mishra, S. K., Satpathy, S., and Jepsen, O., J. Phys.: Condens. Matter 9, 461 (1997).Google Scholar
[17] Kresse, G. and Hafner, J., Phys. Rev. B 47, 558 (1993).Google Scholar
[18] Kresse, G. and Furthmüller, J., Phys. Rev. B 54 11169 (1996).Google Scholar
[19] Kresse, G. and Furthmüller, J., Comput. Mater. Sci. 6, 15 (1996).Google Scholar
[20] Vanderbilt, D., Phys. Rev. B 41, 7892 (1990).Google Scholar
[21] Kresse, G. and Hafner, J., J. Phys.: Condens. Matter 6, 8245 (1994).Google Scholar
[22] Blöchl, P.E., Jepsen, O., and Andersen, O.K., Phys. Rev. B 49, 16223 (1994).Google Scholar
[23] Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., and Fiolhais, C., Phys. Rev. B 46, 6671 (1992).Google Scholar
[24] Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., and Fiolhais, C., Phys. Rev. B 48, 4978 (1993).Google Scholar