Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-30T21:18:52.440Z Has data issue: false hasContentIssue false

Influence of Surface Recombination on the Performance of SiNW Solar Cells and the Preparation of a Passivation Film

Published online by Cambridge University Press:  21 February 2013

Shinya Kato
Affiliation:
Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1-NE-16, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
Yuya Watanabe
Affiliation:
Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1-NE-16, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
Yasuyoshi Kurokawa
Affiliation:
Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1-NE-16, O-okayama, Meguro-ku, Tokyo 152-8552, Japan PRESTO, Japan Science and Technology Agency (JST), Japan
Akira Yamada
Affiliation:
Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1-NE-16, O-okayama, Meguro-ku, Tokyo 152-8552, Japan Photovoltaics Research Center (PVREC), Japan
Yoshimi Ohta
Affiliation:
Advanced Materials Laboratory, Nissan Research Center, Japan
Yusuke Niwa
Affiliation:
Advanced Materials Laboratory, Nissan Research Center, Japan
Masaki Hirota
Affiliation:
Advanced Materials Laboratory, Nissan Research Center, Japan
Get access

Abstract

Al2O3 was deposited on silicon nanowire (SiNW) arrays by atomic layer deposition (ALD) as a passivation layer to reduce surface recombination velocity. As a result, effective minority carrier lifetime was improved from 1.82 to 26.2 μs. From this result, the relative low-surface recombination rate of 2.73 cm/s was obtained from a calculation using one-dimensional device simulation (PC1D). The performance of SiNW solar cells was also simulated by considering the surface recombination velocity on the side of SiNWs using two-dimensional device simulation. It was found that Al2O3 deposited by ALD can improve open-circuit voltage of SiNW solar cells even if the structure has a high-aspect ratio and large surface area. Therefore, improvement in the performance of SiNW solar cells can be expected.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sivakov, V., Andra, G., Gawlik, A., Berger, A., Plentz, J., Falk, F., and Christiansen, S. H., Nano Let. 9 (4), 1549 (2009).CrossRefGoogle Scholar
Tsakalakos, L., Balch, J., Fronheiser, J., Shih, M. Y., LeBoeuf, S. F., Pietrzykowski, M., Codella, P. J., Korevaar, B. A., Sulima, O., Rand, J., Davuluru, A., and Rapol, U., J Nanophotonics 1, (2007).CrossRefGoogle Scholar
Chen, C., Jia, R., Yue, H. H., Li, H. F., Liu, X. Y., Wu, D. Q., Ding, W. C., Ye, T. C., Kasai, S., Tamotsu, H., Chu, J. H., and Wang, S. L., J Appl Phys 108 (9), (2010).Google Scholar
Kayes, B. M., Atwater, H. A., and Lewis, N. S., J Appl Phys 97 (11), (2005).CrossRefGoogle Scholar
Kurokawa, Y., Kato, S., Watanabe, Y., Yamada, A., Ohta, Y., Niwa, Y., and Hirota, M., Jpn J Appl Phys 2012, to be published .Google Scholar
Zhu, J., Yu, Z. F., Burkhard, G. F., Hsu, C. M., Connor, S. T., Xu, Y. Q., Wang, Q., McGehee, M., Fan, S. H., and Cui, Y., Nano Lett 9(1), 279 (2009).CrossRefGoogle Scholar
Zhang, M. L., Peng, K. Q., Fan, X., Jie, J. S., Zhang, R. Q., Lee, S. T., and Wong, N. B., J Phys Chem C 112 (12), 4444 (2008).CrossRefGoogle Scholar
Kato, S., Watanabe, Y., Kurokawa, Y., Yamada, A., Ohta, Y., Niwa, Y., and Hirota, M., Jpn J Appl Phys 51 (2), (2012).CrossRefGoogle Scholar
Chartier, C., Bastide, S., and Levy-Clement, C., Electrochim Acta 53 (17), 5509 (2008).CrossRefGoogle Scholar
Spurgeon, J. M., Plass, K. E., Kayes, B. M., Brunschwig, B. S., Atwater, H. A., and Lewis, N. S., Appl Phys Lett 93 (3), (2008).CrossRefGoogle Scholar
Westwater, J., Gosain, D. P., Tomiya, S., Usui, S., and Ruda, H., J Vac Sci Technol B 15 (3), 554 (1997).CrossRefGoogle Scholar
Wang, N., Tang, Y. H., Zhang, Y. F., Lee, C. S., Bello, I., and Lee, S. T., Chem Phys Lett, 299(2), 237 (1999).CrossRefGoogle Scholar
Bashouti, M. Y., Stelzner, T., Berger, A., Christiansen, S., and Haick, H., J Phys Chem C, 112(49), 19168 (2008).CrossRefGoogle Scholar
Bashouti, M. Y., Stelzner, T., Christiansen, S., and Haick, H., J Phys Chem C 113 (33), 14823 (2009).CrossRefGoogle Scholar
Guo, C. S., Luo, L. B., Yuan, G. D., Yang, X. B., Zhang, R. Q., Zhang, W. J., and Lee, S. T., Angew Chem Int Edit 48 (52), 9896 (2009).CrossRefGoogle Scholar
Bothe, , Bothe, K., Krain, R., Falster, R., Sinton, R., Prog Photovoltaics, 18(3), 204 (2010).CrossRefGoogle Scholar
Bowden, S. and Sinton, R. A., J Appl Phys 102 (12), (2007).CrossRefGoogle Scholar
Brody, J., Rohatgi, A., and Yelundur, V., Prog Photovoltaics 9 (4), 273 (2001).CrossRefGoogle Scholar
Agostinelli, G., Delabie, A., Vitanov, P., Alexieva, Z., Dekkers, H. F. W., De Wolf, S., Beaucarne, G., Sol Energ Mat Sol C 90 (18–19), 3438 (2006).CrossRefGoogle Scholar
Saint-Cast, P., Benick, J., Kania, D., Weiss, L., Hofmann, M., Rentsch, J., Preu, R., and Glunz, S. W., Ieee Electr Device L 31 (7), 695 (2010).CrossRefGoogle Scholar
Schmidt, J., Merkle, A., Brendel, R., Hoex, B., van de Sanden, M. C. M., and Kessels, W. M. M., Prog Photovoltaics 16 (6), 461 (2008).CrossRefGoogle Scholar
Dingemans, G., van de Sanden, M. C. M., and Kessels, W. M. M., Electrochem Solid St 13 (3), H76 (2010).CrossRefGoogle Scholar