No CrossRef data available.
Article contents
Influence of Ta2O5, TiO2, and ZrO2 Interfacial Layers on Structural and Electrical Properties of Laser Ablated Ba0.5Sr0.5TiO3 Thin Films
Published online by Cambridge University Press: 11 February 2011
Abstract
Pulsed laser deposition technique was used to fabricate Ba0.5Sr0.5TiO 3 (BST) thin-films on Pt/TiO 2/SiO2/Si substrates. The influence of thin interfacial layers of Ta2O5, TiO2, and ZrO2, on the structural and electrical properties of BST thin films was investigated. Insertion of interfacial layers does not affect the perovskite phase formation of BST thin films. Buffer layers helped to make uniform distribution of grains and resulted in a relative increase in the average grain size. The dielectric tunability of BST thin films was reduced with the presence of buffer layers. A BST thin film having a dielectric permitivity of 470 reduced to 337, 235 and 233 in the presence of Ta2O5, TiO2, and ZrO2 layers, respectively. The reduction of the relative dielectric permittivity of BST films with the insertion of interfacial layers was explained in terms of a series capacitance effect, due to the low dielectric constant of interfacial layers. The TiO2 layer did not show any appreciable change in the leakage current density. Deposition of thin Ta2O5 and ZrO2 interfacial layer on top of Pt reduced the leakage current density by an order of magnitude.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2003