Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T01:23:01.950Z Has data issue: false hasContentIssue false

Infrared Charge-Modulation Spectroscopy of Defects in Phosphorus Doped Amorphous Silicon

Published online by Cambridge University Press:  01 February 2011

Kai Zhu
Affiliation:
Department of Physics, Syracuse University, Syracuse NY 13244-1130 USA
E. A. Schiff
Affiliation:
Department of Physics, Syracuse University, Syracuse NY 13244-1130 USA
G. Ganguly
Affiliation:
BP Solar, Toano, VA 23168 USA
Get access

Abstract

We present infrared charge-modulation absorption spectra on phosphorus-doped amorphous silicon (a-Si:H:P) with doping levels between 0.17%-5%. At higher doping levels (1% - 5%) we find a sharp spectral line near 0.75 eV with a width of 0.1 eV. We attribute this line to the internal optical transitions of a complex incorporating four fold coordinated phosphorus and a dangling bond. This line is barely detectable in samples with lower doping levels (below 1%). In these samples a much broader line dominates the spectrum that we attribute to uncomplexed dopants. The relative strength of the two spectral features is in rough agreement with a model proposed by Street that has not been previously tested experimentally.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Schropp, R. E. I. and Zeman, M., Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials, and Device Technology (Kluwer, Boston, 1998).Google Scholar
2 Koh, J., Ferlauto, A. S., Rovira, P. I., Wronski, C. R., and Collins, R. W., Appl. Phys. Lett. 75, 2286 (1999).Google Scholar
3 Plass, M. F., Ristein, J., Ley, L., J. Non-Cryst. Solids 164-166, 829 (1993).Google Scholar
4 Chen, I.S. and Wronski, C. R., J. Non-Cryst. Solids 190, 58 (1995).X. Xu, J. Yang, A. Banerjee, S. Guha, K. Vasanth, and S. Wagner, Appl. Phys. Lett. 67, 2323 (1995).Google Scholar
5 Palsule, C., Paschen, U., and Cohen, J. D., Yang, J. and Guha, S., Appl. Phys. Lett. 70, 499 (1997).Google Scholar
6 Lyou, J. H., Schiff, E. A., Hegedus, S. S., Guha, S., Yang, J., in Amorphous and Heterogeneous Silicon Thin Films: Fundamentals to Devices – 1999, edited by Branz, H. M., Collins, R. W., Okamoto, H., Guha, S., and Schropp, R. (Materials Research Society, Symposium Proceedings Vol. 557, 1999), 457.Google Scholar
7 Lyou, J., Kopidakis, N., Schiff, E. A., J. Non-Cryst. Solids 266-269 (2000) 227.Google Scholar
8 Zhu, K., Lyou, J. H., Schiff, E. A., Crandall, R. S., Ganguly, G., Hegedus, S. S., Conference Record of the 28th IEEE Photovoltaics Specialists Conference (Institute of Electrical and Electronics Engineers, Inc., Piscataway, 2000) 725.Google Scholar
9 Zhu, K., Schiff, E. A., and Ganguly, G., J. Non-Cryst. Solids. in press (2002).Google Scholar
10 Weiser, G., Dersch, U., and Thomas, P., Phil. Mag. B 57, 721 (1988).Google Scholar
11 Petkov, M. P., Weber, M. H., Lynn, K. G., Crandall, R. S., Ghosh, V. J., Phys. Rev. Lett. 82, 3819 (1999).Google Scholar
12 Street, R. A., Hydrogenated Amorphous Silicon (Cambridge University Press, Cambridge, 1991).Google Scholar