Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T06:43:41.546Z Has data issue: false hasContentIssue false

Infrared Spectra of Ultra-Thin SiO2 Grown on Si Surfaces

Published online by Cambridge University Press:  21 February 2011

T. Yamazaki
Affiliation:
Department of Electrical Engineering, Hiroshima University, Higashi-Hiroshima 724, Japan
S. Miyazaki
Affiliation:
Department of Electrical Engineering, Hiroshima University, Higashi-Hiroshima 724, Japan
C. H. Bjorkman
Affiliation:
Research Center for Integrated Systems, Hiroshima University, Higashi-Hiroshima 724, Japan
M. Fukuda
Affiliation:
Department of Electrical Engineering, Hiroshima University, Higashi-Hiroshima 724, Japan
M. Hirose
Affiliation:
Department of Electrical Engineering, Hiroshima University, Higashi-Hiroshima 724, Japan
Get access

Abstract

The structure of thin SiO2 films thermally grown on Si(100) and Si(111) surfaces has been characterized by using infrared internal reflection and x-ray photoelectron spectroscopy. It is found that the infrared absorption peak due to the LO phonon mode originating from the Si-O-Si stretching vibration shows a considerable red shift in the thickness range below 30A. This red shift is interpreted in terms of the compressive stress near the interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Grunthaner, F. J., Grunthaner, P. J., Vasqueg, R. P., Lewis, B. F. and Maserjian, J., Phys. Rev. Let. 43 (1979) 1683.CrossRefGoogle Scholar
2 Hattori, T. and Suzuki, T., Appl. Phys. Lett. 43 (1983) 470.CrossRefGoogle Scholar
3 Helms, C. R., Strausser, Y F. and Spicer, W. E., Appl. Phys. Lett. 33 (1978) 767.CrossRefGoogle Scholar
4 Ourmazd, A., Taylor, D. W., Rentchler, J. A. and Bevk, J., Phys. Rev. Lett. 59 (1987) 213.CrossRefGoogle Scholar
5 Lucovsky, G., Fitch, J. T., Kobeda, E. and Irene, E. A., “The Physics and Chemistry of SiO2 and the Si-SiO2 interface” ed. by Helms, C. R. and Deal, B. E. (Plenum Press, New York, 1988)p.l39.Google Scholar
6 Olsen, J. E. and Shimura, F., J. Appl. Phys. 66 (1989) 1353.CrossRefGoogle Scholar
7 Boyd, I. W. and Wilson, I. B., J. Appl. Phy. 62 (1987) 3195.CrossRefGoogle Scholar
8 Nielsen, B., Lynn, K. G., Welch, D. O., Leung, T. C. and Rubloff, G. W., Phys. Rev. B 40 (1989) 1434.CrossRefGoogle Scholar
9 For example, “The Physics and Chemistry of Si02 and the Si-Si02 interface 2” ed. by Helms, C.R. and Deal, B. E. (Plenum Press, New York, 1993) p.91.Google Scholar
10 Ishizaka, A., Iwata, S. and Kamigaki, Y., Surf. Sci. 84 (1979) 355.CrossRefGoogle Scholar
11 de Leeuw, S. W. and Thorpe, M. F., Phy. Rev. Lett. 55 (1985) 2879.CrossRefGoogle Scholar
12 McIntyre, J. D. E. and E .Aspnes, D., Surface Science. 24 (1971) 417.CrossRefGoogle Scholar
13 Bjorkman, C. H., Yamazaki, T., Miyazaki, S. and Hirose, M., Proc. of Intern. Conf. on Advanced Microelectronic Devices and Processing (Sendai, 1994) to be published.Google Scholar
14 “Handbook of Optical Constants of Solid” ed. by Palik, E. D. (Academic Press, Orlando, 1985).Google Scholar
15 Galeener, F. L., Phys. Rev. B 19 (1979) 4292.CrossRefGoogle Scholar
16 Higashi, G. S., Chabal, Y J., Trucks, G. W. and Krishnan, Raghavachari, Appl. Phy. Lett. 56 (1990)656.CrossRefGoogle Scholar
17 Watanabe, S., Nakayma, N. and Ito, T., Appl. Phys. Lett. 59 (1991) 1458.CrossRefGoogle Scholar
18 Sawara, K., Yasaka, T., Miyazaki, S. and Hirose, M., Jpn. Appl. Phys. 31 (1992) L1992.CrossRefGoogle Scholar
19 Fukuda, M., Yamazaki, T., Miyazaki, S. and Hirose, M., Proc. of Intern. Conf. on Advanced Microelectronic Devices and Processing (Sendai, 1994) to be published.Google Scholar