Article contents
Infrared Spectroscopy of Hydrogen in ZnO
Published online by Cambridge University Press: 17 March 2011
Abstract
Zinc oxide (ZnO) has shown great promise as a wide band gap semiconductor with optical, electronic, and mechanical applications. Recent first-principles calculations and experimental studies have shown that hydrogen acts as a shallow donor in ZnO, in contrast to hydrogen's usual role as a passivating impurity. The structures of such hydrogen complexes, however, have not been determined. To address this question, we performed vibrational spectroscopy on bulk, single-crystal ZnO samples annealed in hydrogen (H2) or deuterium (D2) gas. Using infrared (IR) spectroscopy, we have observed O-H and O-D stretch modes at 3326.3 cm−1 and 2470.3 cm−1 respectively, at a sample temperature of 14 K. These frequencies are in good agreement with the theoretical predictions for hydrogen and deuterium in an antibonding configuration, although the bond-centered configuration cannot be ruled out. The IR-active hydrogen complexes are unstable, however, with a dissocation barrier on the order of 1 eV.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2004
References
REFERENCES
- 2
- Cited by