Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T06:43:07.677Z Has data issue: false hasContentIssue false

Initial Crystallization Reactions

Published online by Cambridge University Press:  15 February 2011

J.H. Perepezko
Affiliation:
University of Wisconsin-Madison, Dept. Mat. Sci. and Eng. 1509 Univ. Ave., Madison, WI 53706
D.R. Allen
Affiliation:
Budd Company Technical Center, 1515 Atlantic Blvd, Auburn Hills, MI 48326
Get access

Abstract

During the initial stage of phase formation reactions nucleation conditions often apply a controlling influence on the phase selection, product phase number density and grain size. In most cases the operation of nucleation control is also associated with the development of significant undercooling or supersaturation in order to initiate crystallization. Under this constraint it is common to observe different forms of alloy metastability. In fact, a hierarchy of equilibria can be identified based upon the severity of the kinetic constraints that act during transformation. One consequence of the different levels of metastability is the development of precursor reactions before the initial crystallization. In other cases a kinetic competition between different reaction modes or structures can yield a change in the transformation pathway during reaction. The appearance of kinetic transitions is one consequence of the competition between concurrent reactions and provides a valuable opportunity for kinetics analysis and modeling. In cases where sequential reactions are separated by temperature or time intervals other kinetic constraints operate to expose metastability due to diffusional growth limitations. The identification of the reaction control provides the foundation for kinetics analysis and the development of alloy design strategies. These features can be considered in terms of the observed crystallization behavior during rapid solidification and solid state interface reactions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Boettinger, W.J. and Perepezko, J.H., in, Rapidly Solidified Alloys: Processes, Structures, Properties, Applications, Liebermann, H.H. (ed.) (Marcel Dekker, N.Y., 1993) p.17.Google Scholar
2. Perepezko, J.H., Mat.Sci.Eng. A226–228, 374 (1997).Google Scholar
3. Perepezko, J.H. and Wilde, G., Ber. Bunsenges. Phys. Chem., 6, 1074 (1998).Google Scholar
4. Allen, D.R., Foley, J.C. and Perepezko, J.H., Acta Mat., 46, 431 (1998).Google Scholar
5. Gremaud, M., Allen, D.R., Rappaz, M. and Perepezko, J.H., Acta Mat., 44, 2669 (1996).Google Scholar
6. Köster, U. and Schüinemann, U., Rapidly Solidified Alloys: Processes, Structures, Properties, and Applications, Liebermann, H.H.(ed.)(Marcel Dekker, NY, 1993) p. 303.Google Scholar
7. Inoue, A. and Masumoto, T., Amorphous Alloys (Elsevier Sci. Pub. Amsterdam, 1993) p. 133.Google Scholar
8. Inoue, A., Zhang, T. and Takeuchi, A., Mat. Sci. Forum, 855, 269 (1998).Google Scholar
9. Zhong, Z. C., Jiang, X.Y. and Greer, A.L., Phil. Mag., B76, 505 (1997).Google Scholar
10. Allen, D.R. and Perepezko, J.H., Mat. Sci. Res. Symp. Proc., 398, 57 (1995).Google Scholar
11. Ruhl, R.C., Giessen, B.C., Cohen, M., and Grant, N.J., Mat. Sci. Eng., 2, 314 (1967/1968).Google Scholar
12. Gudzenko, V.N. and Polesa, A.F., Physics of Metals and Metallography, 41, 1106 (1976).Google Scholar
13. Krill, C.E. and Johnson, W.L., Mat. Sci. Res. Symp. Proc. 205, 313 (1992).Google Scholar
14. Perepezko, J.H., Mat. Sci. Eng., 65, 125 (1984).Google Scholar
15. Perepezko, J.H. and Paik, J.S., Mat. Res. Soc. Symp.Proc., 8, 49 (1982).Google Scholar
16. Perepezko, J.H. and Uttormark, M.J., Met. Mater. Trans., 27A, 533 (1996).Google Scholar
17. Clavaguera-Mora, M.T., Ber. Bunsenges. Phys. Chem. 6, 1291 (1998).Google Scholar
18. Battezzati, L., Baricco, M., Schumacher, P., Shih, W.C. and Greer, A.L., Mat. Sci. Eng., A 179/180, 600 (1994).Google Scholar
19. He, Y., Poon, S.J. and Shiflet, G.J., Science, 241, 1640 (1988).Google Scholar
20. Foley, J.C., Sieber, H., Allen, D.R. and Perepezko, J.H., in “Solidification Processing-97”,Beech, J. and Jones, H.,eds. (Univ Sheffield,UK) (1997) 602.Google Scholar
21. Foley, J.C., Allen, D.R. and Perepezko, J.H., Scripta Mat. 35,655 (1996).Google Scholar
22. Kelton, K.F., Phil. Mag. Let.,77, 337 (1998).Google Scholar
23. Foley, J.C., Allen, D.R. and Perepezko, J.H., Mat.Sci. Eng. A226–228, 569 (1997).Google Scholar
24. Kashchiev, D., Surf. Sci., 14, 209 (1969).Google Scholar
25. Kelton, K. F., Greer, A. L., and Thompson, C. V., J. Chem. Phys., 79, 6261 (1983).Google Scholar
26. Buchwitz, M., Adlwarth-Dieball, R., and Ryder, P. L., Acta Metall. Mater., 41, 1885 (1993).Google Scholar
27. Wu, R. I. and Perepezko, J.H., to be published.Google Scholar
28. Li, Q., Johnson, E., Johansen, A., and Sarholt-Kristensen, L., Mater. Sci. Eng., A151, 107 (1992).Google Scholar
29. Wilde, G., Sieber, H., and Perepezko, J. H., Scripta Mater., 40, 779 (1999).Google Scholar
30. Ayers, J.D., Harris, V.G., Sprague, J.A., Elam, W.T. and Jones, H.N., Acta. Mater. 46, 1861 (1998).Google Scholar
31. Hsieh, H.Y., Toby, B.H., Egami, T., He, Y., Poon, S.J. and Shiflet, G.J., J. Mat. Res.,5, 2807 (1990).Google Scholar
32. Louzguine, D.V. and Inoue, A., Nanostr. Mat., 11, 115 (1999).Google Scholar
33. Sagel, A., Sieber, H., Fecht, H.-J. and Perepezko, J.H., Acta Mater. 46, 4233 (1998).Google Scholar
34. Perepezko, J.H., Park, J.S., Landry, K., Sieber, H., Silva Bassani, M. H. da and Edelstein, A.S., Mat.Res.Soc.Symp.Proc., 481, 509 (1998)Google Scholar
35. Edelstein, A.S., Gillespie, D.J., Cheng, S.F., Perepezko, J.H. and Landry, K., J. Appl. Phys.,85, 2636 (1999).Google Scholar
36. Dong, Z.F., Perepezko, J.H. and Edelstein, A.S., in preparation.Google Scholar