Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T10:17:54.373Z Has data issue: false hasContentIssue false

Initial Studies on The Heteroepitaxial Growth of Thin Films of (AI/In)N on Ain-Seeded (00.1) Sapphire by Single-Target Reactive Magnetron Sputtering

Published online by Cambridge University Press:  25 February 2011

T. J. Kistenmacher
Affiliation:
Milton S. Eisenhower Research Center, Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD 20723-6099
S. A. Ecelberger
Affiliation:
Milton S. Eisenhower Research Center, Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD 20723-6099
W. A. Bryden
Affiliation:
Milton S. Eisenhower Research Center, Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD 20723-6099
Get access

Abstract

Thin films of (AI/In)N alloys have been deposited on AIN-nucleated (00.1) sapphire by reactive (pure N2 gas) magnetron sputtering and characterized by X-ray scattering, stylus profilometry, optical spectroscopy, and electrical transport measurements. Initial efforts have concentrated on producing films with compositions near Al0.31In0.69N (bandgap tailored to GaN). The alloy sputtering targets were disks fabricated by cold pressing appropriate molar mixtures of beads of 99.99% purity Al and In. The resulting thin films are composed of heteroepitaxial grains {(00.1)InNll(00.1)sapphire; (10.0)InNll(11.0)Sapphire} and their chemical composition has been deduced from the variation in the a cell constant (as measured by the X-ray precession method) to yield equilibrium film compositions near Al0.04In0.96N and Al0.25In0.75N, respectively. Preliminary results are presented on the dependence of the quality of heteroepitaxial growth and electrical and optical properties of. these AlxIn1−xN alloy films on various growth parameters: such as chemical composition; film thickness; morphology; and substrate temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Starosta, K., Phys. Stat. Sol. 68, K55 (1981).Google Scholar
2. Starosta, K. and Marsik, J., Thin Solid Films 128, L41 (1985).Google Scholar
3. Kubota, K., Kobayashi, Y., and Fujimoto, K., J. Appl. Phys. 66, 2984 (1989).Google Scholar
4. Richardson, D. and Hill, R., J. Phys. C 5, 821 (1972).Google Scholar
5. Amano, H., Sawaki, N., Akasaki, I., and Toyoda, Y., Appl. Phys. Lett. 48, 415 (1988); H. Amano, I. Akasaki, K. Hiramatsu, N. Koide, and N. Sawaki, Thin Solid Films 163, 415 (1988); I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, and N. Sawaki, J. Cryst. Growth 98, 209 (1989).Google Scholar
6. Kistenmacher, T. J. and Bryden, W. A., Appl. Phys. Lett. 59, 1844 (1991); T. J. Kistenmacher, S. A. Ecelberger, and W. A. Bryden, Proc. Mater. Res. Soc. 242, 675 (1992).Google Scholar
7. Jenkins, D. W. and Dow, J. D., Phys. Rev. B 39, 3317 (1989).Google Scholar
8.See, for example: Kistenmacher, T. J., Bryden, W. A., Morgan, J. S., and Poehler, T. O., J. Appl. Phys. 68, 1541 (1990); T. J. Kistenmacher, D. Dayan, R. Fainchtein, W. A. Bryden, J. S. Morgan, and T. O. Poehler, Proc. Mater. Res. Soc. 162, 573 (1990); T. J. Kistenmacher, W. A. Bryden, J. S. Morgan, D. Dayan, R. Fainchtein, and T. O. Poehler, J. Mater. Res. 6, 1300 (1991).Google Scholar
9. Yoshida, S., Misawa, S., and Gonda, S., J. Appl. Phys. 53, 6844 (1982).Google Scholar
10. Pankove, J. I., Phys. Rev. A 140, 2059 (1965); Pankove, J. I., Optical Processes in Semiconductors (Dover, New York, 1971).Google Scholar
11. Hovel, H. J. and Cuomo, J. J., Appl. Phys. Lett. 20, 71 (1972).Google Scholar
12. Bryden, W. A., Morgan, J. S., Fainchtein, R., and Kistenmacher, T. J., Thin Solid Films 213, 86 (1992).Google Scholar