Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T02:47:37.888Z Has data issue: false hasContentIssue false

Inkjet-printed PEDOT:PSS/SWCNTs on Paper: Substrate Effects on Conductivity

Published online by Cambridge University Press:  01 March 2011

Peter D. Angelo
Affiliation:
University of Toronto, Department of Chemical Engineering and Applied Chemistry Toronto, ON, M5S 3E5, Canada
Ramin R. Farnood
Affiliation:
University of Toronto, Department of Chemical Engineering and Applied Chemistry Toronto, ON, M5S 3E5, Canada
Get access

Abstract

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), or PEDOT:PSS, and single-walled carbon nanotubes (SWCNTs) were incorporated into an inkjet ink. The combination of PEDOT, a conjugated, conductive polymer, and highly conductive CNTs, yielded a conductive film after printing and curing of the ink. Several paper types were used as substrates for depositing printed patterns of the PEDOT:PSS/SWCNT ink. Wide variability in conductivity was observed for different commercial paper types, ranging from a maximum 0.9 S/cm on Epson® Premium Photo cast-coated glossy paper to 3 × 10-5 S/cm on Epson® Premium Presentation coated cardstock. Increasing the SWCNT content of the ink improved conductivity on a non-permeable cellulose acetate substrate to a point, after which the combined effects of ink filtration and jetting limited the number of nanotubes delivered to the substrate. On permeable paper, the irregularity of the substrate overcame the beneficial effects of SWCNTs as “bridges” between conductive PEDOT regions. Correlations between the substrates’ physical structure and conductivity were established for the printed sheets, with densely coated sheets presenting the highest conductivity, and porous sheets the lowest.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ouyang, J., Chu, C., Chen, F., Xu, Q. and Yang, Y., Adv. Func. Mat. 15(2), 203 (2005).Google Scholar
2. Garnett, E. and Ginley, D., US Dep. Energy J. Underg. Res., 24-29 (2004).Google Scholar
3. Tekin, E., Smith, P., and Schubert, U., Soft Matter 4, 703 (2008).Google Scholar
4. Yoshioka, Y. and Jabbour, G., Synth. Metals 156, 779 (2006).Google Scholar
5. Crispin, X., Marciniak, S., Osikowicz, W., Zotti, G., Denier van der Gon, A., Louwet, F., Fahlman, M., Groenedaal, L., De Schryver, F., and Salaneck, W., J. Poly. Sci. B: Poly. Phys. 41, 2651 (2003).Google Scholar
6. Sankir, N., Circuit World 34(4), 32 (2008).Google Scholar
7. Ouyang, J., Xu, Q., Chu, C., Yang, Y., Li, G., and Shinar, J., Polymer 45, 8443 (2004).Google Scholar
8. Fan, B., Mei, X., and Ouyang, J., Macromolecules 41, 5971 (2008).Google Scholar
9. Xia, Y. and Ouyang, J., Macromolecules 42, 4141 (2009).Google Scholar
10. Hsiao, Y., Whang, W., Chen, C., and Chen, Y., J. Mater. Chem. 18, 5948 (2008).Google Scholar
11. Lopez, M., Sanchez, J., and Estrada, M., Proc. 7th Intern. Carrib. Conf. on Devices, Circuits, and Systems (2008).Google Scholar
12. Kim, J., Jung, J., Lee, D., and Joo, J., Synth. Metals 126, 311 (2002).Google Scholar
13. Crispin, X., Jakobsson, F., Crispin, A., Grim, P., Andersson, P., Volodin, A., van Haesendonck, C., Van der Auweraer, M., Salaneck, W., and Berggren, M., Chem. Mater. 18, 4354 (2006).Google Scholar
14. Fehse, K., Walzer, K., Leo, K., Lovenvich, W., and Elschner, A., Adv. Mater. 19, 441 (2007).Google Scholar
15. Dobbelin, M., Marcilla, R., Salsamendi, M., Pozo-Gonzalo, C., Carrasco, P., Pomposo, J., and Mecerreyes, D., Chem. Mater. 19, 2147 (2007).Google Scholar
16. Xue, F. and Su, Y., IEEE Transactions on Electron Devices 52(9), 1982 (2005).Google Scholar
17. Kymakis, E., Klapsis, G., Koudoumas, E., Stratakis, E., Kornilios, N., Vidakis, N., and Franghiadakis, Y., Eur. Phys. J. App. Phys. 36, 257 (2007).Google Scholar
18. Moon, J., Park, J., Lee, T., Kim, Y., Yoo, J., Park, C., Kim, J., and Jin, K., Diamond Rel. Mater. 14, 1882 (2005).Google Scholar
19. Bhandari, S., Deepa, M., Srivasta, A., Joshi, A., and Kant, R., J. Phys. Chem. B 113, 9416 (2009).Google Scholar
20. Mustonen, T., Kordas, K., Saukko, S., Toth, G., Penttila, J., Heliston, P., Seppa, H., and Jantunen, H., Physica Status Solidi B 244(11), 4336 (2007).Google Scholar
21. Montibon, E., Jarnstrom, L., and Lestelius, M., Cellulose 16, 807 (2009).Google Scholar
22. Montibon, E., Jarnstrom, L., and Lestelius, M., J. App. Poly. Sci. (2010): in press. Google Scholar
23. Denneulin, , Blayo, A. Bras, J., and Neuman, C., Prog. Org. Coatings 63, 87 (2008).Google Scholar
24. Agarwal, M., Lvov, Y., and Varahramyan, K., Nanotechnology 17, 5319 (2006).Google Scholar
25. Angelo, P. and Farnood, R., J. Adhes. Sci. Tech, 24(3), 643 (2010).Google Scholar
26. Angelo, P. and Farnood, R., MRS Spring Meeting Proceedings: Symposium T (2010).Google Scholar
27. Angelo, P., Cole, G., and Farnood, R., Proc. 7th International Paper & Coating Chem. Symposium, 283 (2009).Google Scholar