No CrossRef data available.
Published online by Cambridge University Press: 17 March 2011
We present angle-resolved photoemission measurements for ultrathin In films on Si(111). Depending on the coverage, this system self-organizes into a metallic monolayer with either 4×1 or √7×√3 symmetry relative to the substrate. Electronically, they behave like ideal one- and two-dimensional electron gases (1DEG and 2DEG), respectively. The 4×1 system has atomic chains of In whose energy bands disperse only parallel to the chains, while for the √7×√3 system, the dominant reciprocal space features (in both diffraction and bandstructure) resemble a pseudo-square lattice with only weaker secondary features relating to the √7×√3 periodicity. In both materials the electrons show coupling to the structure. The 1DEG couples strongly to phonons of momentum 2kF, leading to an 8ד2” Peierls-like insulating ground state. The 2DEG appears to be partially stabilized by electron gap formation at the √7×√3 zone boundary.