Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T10:00:07.675Z Has data issue: false hasContentIssue false

In-Situ Real-Time Depth Profiling by Elastic Recoil Detection and Its Application to Ion Nitriding of Stainless Steel

Published online by Cambridge University Press:  10 February 2011

O. Kruse
Affiliation:
Forschungszentrum Rossendorf, Postfach 510119, D-01314 Dresden, Germany
S. Parascandola
Affiliation:
Forschungszentrum Rossendorf, Postfach 510119, D-01314 Dresden, Germany
R. Groetzschel
Affiliation:
Forschungszentrum Rossendorf, Postfach 510119, D-01314 Dresden, Germany
W. Moeller
Affiliation:
Forschungszentrum Rossendorf, Postfach 510119, D-01314 Dresden, Germany
Get access

Abstract

A dual beam experiment has been set up combining real-time depth profiling and low energy ion implantation in order to study the kinetics of ion nitriding. The choice of low energy ion implantation allows precise and independent control of the important ion nitriding parameters ion energy, ion current density, temperature and residual gas composition. Real-time depth profiling is achieved by Elastic Recoil Detection (ERD) using an angle resolving ionization chamber telescope detector. A large solid angle (5.4 msr) allows a fast data acquisition and hence real-time depth profiling with a time resolution of about 30 s combined with a depth resolution of about 10 nm. The capabilities of the setup and its limitations will be discussed. Measurements revealing the role of mechanisms relevant for the nitrogen transport during ion nitriding of stainless steel i.e. diffusion, sputtering, adsorption of oxygen from the residual gas will be presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Auciello, O., Krauss, A.R. /Eds.), In situ, Real-time Characterization of Thin Film Growth Processes, MRS Bulletin, vol. 20 (5) (1995).10.1557/S0883769400044833Google Scholar
2 Möller, W., Fukarek, W., Grigull, S., Kruse, O., Parascandola, S., Nucl. Instrum. Meth. B 136–138 (1998) 1203.10.1016/S0168-583X(97)00813-6Google Scholar
3 Fukarek, W., Kruse, O., Kolitsch, A. and Möller, W., Thin Solid Films, 308 (1997) 38.10.1016/S0040-6090(97)00533-6Google Scholar
4 Stoquert, J.P., Guillaume, G., Hage-Ali, M., Grob, J.J. and Ganter, C., Nucl. Instr. and Meth. B 44(1989)184.10.1016/0168-583X(89)90426-6Google Scholar
5 Kruse, O. and Carstanjen, H. D., Nucl. Instr. and Meth. B 89 (1994) 191.10.1016/0168-583X(94)95171-3Google Scholar
6 Assmann, W., Nucl. Instr. and Meth. B 64 (1992) 267.10.1016/0168-583X(92)95478-AGoogle Scholar
7 Assman, W., Huber, H., Steinhausen, Ch., Dobler, M., Gltickler, H., Weidinger, A., Nucl. Instr. and Meth. B 89 (1994) 131.10.1016/0168-583X(94)95159-4Google Scholar
8 Parascandola, S., Kruse, O., Möller, W., to be published.Google Scholar
9 Biersack, J.P. and Haggmark, L.G., Nucl. Instrum. Meth. 174 (1980) 257.10.1016/0029-554X(80)90440-1Google Scholar
10 Ziegler, J.F., TRIM 94.Google Scholar
11 Möller, W., Parascandola, S., Kruse, O., Gtinzel, R., Richter, E., to be published.Google Scholar