Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T10:03:25.653Z Has data issue: false hasContentIssue false

In-Situ Reflectance Measurements of Measurements of During Ion Implantation

Published online by Cambridge University Press:  21 February 2011

Pieter L. Swart
Affiliation:
Sensors Sources and Signal Processing Research Group, Faculty of Engineering, Rand Afrikaans University, Johannesburg 2000
Bea M. Lacquet
Affiliation:
Sensors Sources and Signal Processing Research Group, Faculty of Engineering, Rand Afrikaans University, Johannesburg 2000
Michael F. Grobler
Affiliation:
Sensors Sources and Signal Processing Research Group, Faculty of Engineering, Rand Afrikaans University, Johannesburg 2000
Get access

Abstract

Damage introduced during ion implantation of semiconductor materials coalesce at a certain critical dose, for a particular energy and ion species. After this threshold dose rapid changes occur in the reflectance. This may be used for studying the amorphization process, or it may be applied as a non--destructive dosimeter and uniformity tool.

An automated reflectometer was developed for studying reflectance during ion implantation of semiconductors with various ion species. Results on argon and phosphorous implants into silicon at energies ranging from 50 to 240 keV are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gibbons, J. F., Proc. IEEE 60, 1062 (1972).Google Scholar
2. Crowder, B. L., J. Electrochem. Soc. 117, 671 (1970).Google Scholar
3. Kurtin, S., Shifrin, G. A. and McGill, T. C., Appl. Phys. Lett. 14, 223 (1969).Google Scholar
4. Hart, R. R. and Marsh, O. J., Appl. Phys. Lett. 14, 225 (1969).Google Scholar
5. McGill, T. C., Kurtin, S. L. and Shifrin, G. A., J. Appl. Phys. 41, 246 (1970).Google Scholar
6. Yen, E. T., Masters, B. J. and Kastl, R., in Ion Implantation in Semiconductors and Other Materials, edited by Namba, S. (Pergamon Press, NY & London, 1974) p. 501.Google Scholar
7. Miyao, M., Miyazaki, T. and Tokuyama, T., Japan J. AppI. Phys. f 17, 955 (1978).Google Scholar
8. Kachare, A. H. and Spitzer, W.G., J. Appl. Phys. 45, 2938 (1974).Google Scholar
9. Watanabe, K., Miyao, M., Takemoto, I. and Hashlimoto, N., AppI. Phys. Lett. 34, 518 (1979).Google Scholar
10. Nakamura, K. and Kamoshida, M., Rad. Eft. 42, 29 (1979).Google Scholar
11. Nakamura, K., Gotoh, T. and Kamoshida, M., J. Appl. Phys. 50, 3985 (1979).Google Scholar
12. Watanabe, K., Motooka, T., Hashimoto, N. and Tokuyama, T., AppI. Phys. Lett. 36, 451 (1980)Google Scholar
13. Motooka, T. and Watanabe, K., J. Appl. Phys. 51, 4125 (1981).Google Scholar
14. Delfino, M. and Razouk, R. R., J. Appl. Phys. 52, 386 (1981).Google Scholar
15. Fried, M., Lohner, T., Jåroli, E., Vizkelethy, Gy., Mezey, G., Somogyi, M., Kerkow, H. and Gyulai, J., Thin Solid Films 116 (1984).Google Scholar
16. Sigmund, P. and Sanders, J.-B.,in Applications oflIon Beams to Semiconductor Technology, edited by Glotin, P. (Edition Ophrys, France, 1967) p. 215.Google Scholar
17. Miyao, M., Yoshihiro, N., Tokuyama, T. and Mitsuishi, T., J. Appl. Phys. 49, 2573 (1978).Google Scholar
18. Mayer, J. W., Eriksson, L. and Davies, J. A.: Ion Implantation in Semiconductors, (Academic Press, NY, 1970).Google Scholar
19. Crowder, B. L., Title, R. S., Brodsky, M. H. and Pettit, G. D., Appl. Phys. Lett. 16, 205 (1970).Google Scholar
20. Kinchin, G. H. and Pease, R. S., Rep. Prog. Phys. 18, 2 (1955).Google Scholar
21. Wood, D. M. and Ashcroft, N. W., Phil. Mag. 35, 269 (1977).Google Scholar
22. Swart, P. L., Aharoni, H., Lacquet, B. M., Nuci. Instr. Meth. Phys. Res. B 6 365 (1985).Google Scholar
23. Beaglehole, D. and Zavetova, M., J. Non-Cryst. Sol. 4, 272 (1970).Google Scholar