Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T14:10:05.356Z Has data issue: false hasContentIssue false

In-Situ Scanning Probe Microscopy of Solid-Liquid Interfaces: Role of Epitaxial Oxide Adlayers on Cu Electrodeposition

Published online by Cambridge University Press:  21 February 2011

John R. LaGraff
Affiliation:
Department of Chemistry, Materials Research Laboratory, The University of Illinois at Urbana- Champaign, Urbana, IL 61801
Andrew A. Gewirth
Affiliation:
Department of Chemistry, Materials Research Laboratory, The University of Illinois at Urbana- Champaign, Urbana, IL 61801
Get access

Abstract

We discuss how the nanoscale structural and chemical properties of copper (Cu) single crystal surfaces immersed in acidic aqueous solutions affect local electrochemical function. In particular, perturbation of oxide adlayers with in-situ atomic force microscopy (AFM) is shown to locally enhance the electrochemical deposition of Cu on Cu electrode surfaces. The results are consistent with a heterogeneous nucleation and growth mechanism in which the tip-sample interaction creates surface defect sites in passivating oxide adlayers which are active towards the electrochemical adsorption of Cu species. This “protect-deprotect-react” scheme enables precise control of feature sizes and allows this technique to be used for fabrication and constructive modification of solid-liquid interfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] West, J.M., Electrodeposition and Corrosion Processes; Van Nostrana Reinhold: New York, 1971;Google Scholar
Winand, R., Trans. Sec. C Inst. Min. Metall. 84, 67 (1975).Google Scholar
[2] See Mater. Res. Soc. Bull, 18, pp. 1856 (1993).Google Scholar
[3] Siegenthaler, H., in Scanning Tunneling Microscopy II; Wiesendanger, R., Guntherodt, H.J., Eds.; Springer-Verlag: New York, 1992; vol. 28; Chp. 2;Google Scholar
NATO Proceedings: Nanoscale Probes of the Solid/Liquid Interface; Siegenthaler, H., Gewirth, A.A., Eds.; Kluwer Academic Publishers: Dordecht, The Netherlands; (In press, 1995).Google Scholar
[4] Cruickshank, B., Sneddon, D.D., Gewirth, A.A., Surf. Sci. 281, L308 (1993).Google Scholar
[5] LaGraff, J.R., Gewirth, A.A., Surf. Sci. Lett, (in press, 1995).Google Scholar
[6] LaGraff, J.R., Cruickshank, B., Gewirth, A.A., Mat. Res. Soc. Proc. 332, 121 (1994).Google Scholar
[7] LaGraff, J.R., Gewirth, A.A., J. Phys. Chem. 98, 11246 (1994).Google Scholar
[8] LaGraff, J.R., Gewirth, A.A., (manuscript in preparation).Google Scholar
[9] Vilche, J.R., Juttner, K., Electrochem. Acta 32, 1567 (1987).Google Scholar
[10] Nichols, R.J., Kolb, D.M., Behm, R.J., J. Electroanal. Chem. 313, 109 (1991).Google Scholar
[11] Kepler, K.D., Gewirth, A.A., Surf. Sci. 303, 101 (1994).Google Scholar
[12] Deposits on the (111) and (100) surface often possessed similar epitaxial orientations to the underlying substrate.Google Scholar
[13] Mamin, H.J., Rugar, D., Appl. Phys. Lett. 61, 1003 (1992);Google Scholar
Leung, O.M., Goh, M.C., Science 255, 64 (1992);Google Scholar
Delawski, E., Parkinson, B.A., J. Am. Chem. Soc. 114, 1661 (1992);Google Scholar
Kim, Y., Lieber, C.M., Science 257, 375 (1992).Google Scholar
[14] Brumfield, J.C., Goss, C.A., Irene, E.A., Murray, R.W., Langmuir, 2810 (1992).Google Scholar
[15] Chen, L., Guay, D., J. Electrochem. Soc. 141, L43 (1994).Google Scholar
[16] LaGraff, J.R., Gewirth, A.A., (unpublished results).Google Scholar
[17] Pourbaix, M., Atlas of Electrochemical Equilibria in Aqueous Solutions; Pergamon Press: New York, 1966; p. 387.Google Scholar
[18] Bradley, R.A. et al., J. Electroanal. Chem. 309, 319 (1991).Google Scholar
[19] Besenbacher, F., Norskov, J.K., Prog, in Surf. Sci. 44, 5 (1993).Google Scholar
[20] Becker, R.S., Golovchenko, J.A., Swartzentruber, B.S., Nature 325, 419 (1987);Google Scholar
Lyo, I., Avouris, P., Science 253, 173 (1991);Google Scholar
Eigler, D.M., Schweizer, E.K., Nature 344, 524 (1990);Google Scholar
Huang, J.L., Sung, Y.E., Lieber, C.M., Appl. Phys. Lett 61, 1528 (1992);Google Scholar
Garfunkel, E., et al. Science 246, 99 (1989);Google Scholar
Sato, A., Tsukamoto, Y., Nature 363, 431 (1993);Google Scholar
Kobayashi, A., Grey, F., Williams, R.S., Aono, M., Science 259, 1724 (1993).Google Scholar
[21] Schoer, J.K., Ross, C.B., Crooks, R.M., Corbitt, T.S., Hampden-Smith, M.J., Langmuir 10, 615 (1994).Google Scholar
[22] Staufer, U., in Scanning Tunneling Microscopy II; Wiesendanger, R., Guntherodt, H.J., Eds.; Springer-Verlag: New York, 1992; vol. 28; Chp. 8.Google Scholar
[23] Lin, Ch.W., Fan, F.R.F., Bard, A.J., J. Electrochem. Soc. 134, 1038 (1987);Google Scholar
Nagahara, L.A., Thundat, T., Lindsay, S.M., Appl. Phys. Lett. 57, 270 (1990).Google Scholar
[24] Schneir, J., Hansma, P.K., Langmuir 3, 1025 (1987).Google Scholar
[25] Li, W., Virtanen, J.A., Penner, R.M., Appl. Phys. Lett. 60, 1181 (1992);Google Scholar
Li, W., Virtanen, J.A., Penner, R.M., J. Phys. Chem. 96, 6529 (1992).Google Scholar
[26] JRL acknowledges a National Science Foundation Postdoctoral Fellowship in Chemistry (CHE-9302406). AAG acknowledges a Presidential Young Investigator Award (CHE-9027593) with matching funds provided by Digital Instruments, Inc. This work was funded by the Department of Energy (DE -FG02–91ER45349) through the Materials Research Laboratory at the University of Illinois.Google Scholar