Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T21:10:36.314Z Has data issue: false hasContentIssue false

In-situ TEM studies of ion-irradiation induced bubble development and mechanical deformation in model nuclear materials

Published online by Cambridge University Press:  20 February 2014

S E Donnelly
Affiliation:
School of Computing and Engineering, University of Huddersfield, UK.
G Greaves
Affiliation:
School of Computing and Engineering, University of Huddersfield, UK.
J A Hinks
Affiliation:
School of Computing and Engineering, University of Huddersfield, UK.
C J Pawley
Affiliation:
School of Computing and Engineering, University of Huddersfield, UK.
M-F Beaufort
Affiliation:
Institut Pprime, University of Poitiers, France.
J-F Barbot
Affiliation:
Institut Pprime, University of Poitiers, France.
E Oliviero
Affiliation:
JANNuS – CSNSM, Orsay, France.
R P Webb
Affiliation:
Ion Beam Centre, University of Surrey, UK.
Get access

Abstract

The MIAMI* facility at the University of Huddersfield is one of a number of facilities worldwide that permit the ion irradiation of thin foils in-situ in a transmission electron microscope. MIAMI has been developed with a particular focus on enabling the in-situ implantation of helium and hydrogen into thin electron transparent foils, necessitating ion energies in the range 1 – 10 keV. In addition, however, ions of a variety of species can be provided at energies of up to 100 keV (for singly charged ions), enabling studies to focus on the build up of radiation damage in the absence or presence of implanted gas.

This paper reports on a number of ongoing studies being carried out at MIAMI, and also at JANNuS (Orsay, France) and the IVEM / Ion Accelerator Facility (Argonne National Lab, US). This includes recent work on He bubbles in SiC and Cu; the former work concerned with modification to bubble populations by ion and electron beams and the latter project concerned with the formation of bubble super-lattices in metals.

A study is also presented consisting of experiments aimed at shedding light on the origins of the dimensional changes known to occur in nuclear graphite under irradiation with either neutrons or ions. Single crystal graphite foils have been irradiated with 60 keV Xe ions in order to create a non-uniform damage profile throughout the foil thickness. This gives rise to varying basal-plane contraction throughout the foil resulting in almost macroscopic (micron scale) deformation of the graphite. These observations are presented and discussed with a view to reconciling them with current understanding of point defect behavior in graphite.

*Microscope and Ion Accelerator for Materials Investigations

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hinks, J. A., van den Berg, J. A. and Donnelly, S. E.. J. Vac Sci & Technol. A29-2 (2011) 021003 CrossRefGoogle Scholar
Jones, R., Giancarli, L., Hasegawa, A., Katoh, Y., Kohyama, A., Riccardi, B., Snead, L., and Weber, W., Journal of Nuclear Materials, 307-311 (2002) 10571072,10.1016/S0022-3115(02)00976-5CrossRefGoogle Scholar
Birtcher, R C, Donnelly, S E and Templier, C, Phys Rev B50 (1994) 764769.CrossRefGoogle Scholar
Salvat, F., Fernandez-Varea, J. M., Sempau, J., Acosta, E. and Sempau, J.. PENELOPE, a code system for Monte Carlo simulation of electron and photon, in Workshop Proceedings, (Issy-les-Moulineaux, France), Nuclear Energy Agency, (2011).Google Scholar
Mills, R. L., Lievenberg, D. H., Bronson, J. C., Phys. Rev. B 21(11) (1980) 5137 CrossRefGoogle Scholar
Brenner, D., Phys Rev B42, (1990) 84589471 and Phys Rev B46, (1990) 1948 Google Scholar
Tersoff, J. Phys Rev B39 (1989) 556-5568 and Phys Rev B41 (1990) 3248.Google Scholar
Ziegler, J., Biersack, J., Littmark, U., The Stopping and Ranges of Ions, Pergamon, New York, (1985)Google Scholar
Evans, J. H., Nature 229 (1971 ) 403–4CrossRefGoogle Scholar
Evans, J. H., Rad. Effects 10 (1971)5560 CrossRefGoogle Scholar
Sass, S. L. and Eyre, B. L., Phil. Mag. 27 (1973) 14471453.CrossRefGoogle Scholar
Johnson, P. B. and Mazey, D. J., Nature 276 (1978) 595596.CrossRefGoogle Scholar
Evans, J. H. Phil. Mag. 85 (2005) 11771190.CrossRefGoogle Scholar
Evans, J. H., Phil. Mag. 86 (2006)173188.CrossRefGoogle Scholar
Edmonson, P. D. et al. , these proceedings.Google Scholar
Mazey, D. J., Evans, J. H., J. Nucl. Mater. 138 (1986) 1618,CrossRefGoogle Scholar
Gan, J., Keiser, D. D., Wachs, D. M., Robinson, A. B., Miller, B. D., Allen, T. R., J. Nucl. Mater. 396, (2010) 234239,CrossRefGoogle Scholar
Brocklehurst, J. E., Kelly, B. T., Carbon 31 (1993) 179183 CrossRefGoogle Scholar
Hinks, J. A., Haigh, S. J., Greaves, G., Sweeney, F., Pan, C. T., Young, R. J., Donnelly, S. E., Carbon, Volume 68 (2014) 273284 CrossRefGoogle Scholar
Jeong, B. Wook, Ihm, J. and Lee, G.-D., Phys. Rev. Letters 78 (2008)165403 Google Scholar
Latham, C. D., Heggie, M. I., Alatalo, M., Öberg, S. and Briddon, P. R.. J. Phys.: Condens. Matter 25 (2013) 135403.Google Scholar
Kaxiras, E. and Pandey, K. C., Phys. Rev. Lett. 61 (1988) 26932696 CrossRefGoogle Scholar
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., Science 306 (2004) 666669.CrossRefGoogle Scholar
Allen, C.W., Funk, L.L., and Ryan, E.A., Mater. Res. Soc. Proc. 396 (1996) 641.CrossRefGoogle Scholar
Abe, H., Naramoto, H., Kinoshita, C, Mater. Res. Soc. Proc. 373 (2011) 383.CrossRefGoogle Scholar