Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T10:00:24.287Z Has data issue: false hasContentIssue false

In-situ TEM studies of magnetization reversal processes in magnetic nanostructures

Published online by Cambridge University Press:  26 February 2011

Amanda K Petford-Long
Affiliation:
petford.long@anl.gov, Argonne National Laboratory, Materials Science Division, 9700 S Cass Avenue, Argonne, IL, 60439, United States, 630 252 5480, 630 252 4289
Thomas Bromwich
Affiliation:
thomas.bromwich@trinity.ox.ac.uk, University of Oxford, Department of Materials, United Kingdom
Amit Kohn
Affiliation:
amit.kohn@materials.ox.ac.uk, University of Oxford, Department of Materials, United Kingdom
Victoria Jackson
Affiliation:
vicky.jackson@seh.ox.ac.uk, University of Oxford, Department of Materials, United Kingdom
Takeshi Kasama
Affiliation:
rafal.db@msm.cam.ac.uk, University of Cambridge, Department of Materials Science and Metallurgy, United Kingdom
Rafal Dunin-Borkowski
Affiliation:
red10@hermes.cam.ac.uk, University of Cambridge, Department of Materials Science and Metallurgy, United Kingdom
Caroline A Ross
Affiliation:
caross@mit.edu, Massachusetts Institute of Technology, Materials Science and Engineering Department, United States
Get access

Abstract

One of the most widely studied types of magnetic nanostructure is that used in devices based on the giant magnetoresistance (GMR) or tunnel magnetoresistance (TMR) phenomena. In order to understand the behaviour of these materials it is important to be able to follow their magnetisation reversal mechanism, and one of the techniques enabling micromagnetic studies at the sub-micron scale is transmission electron microscopy. Two techniques can be used: Lorentz transmission electron microscopy and off-axis electron holography, both of which allow the magnetic domain structure of a ferromagnetic material to be investigated dynamically in real-time with a resolution of a few nanometres. These techniques have been used in combination with in situ magnetizing experiments, to carry out qualitative and quantitative studies of magnetization reversal in a range of materials including spin-tunnel junctions, patterned thin film elements and magnetic antidot arrays. Quantitative analysis of the Lorentz TEM data has been carried out using the transport of intensity equation (TIE) approach.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Baibich, M.N., Broto, J.M., Fert, A., Van Dau, F. Nguyen, Petroff, F., Etienne, P., Creuzet, G., Friedrich, A. and Chazelas, A., Phys. Rev. Lett. 61, 2472 (1988).Google Scholar
2 Dieny, B., Speriosu, V.S., Parkin, S.S.P., Gurney, B.A., Wilhoit, D.R. and Mauri, D., Phys. Rev. B43, 1297 (1991).Google Scholar
3 Gallagher, W.J., S.Parkin, S.P., Yu, L., Bian, X.P., Marley, A. Altman, R.A., Rishton, S.A., Roche, K.P., Jahnes, C., Shaw, T.M. and Gang, X., J. Appl. Phys. 81, 3741 (1997).Google Scholar
4 Tehrani, S., Slaughter, J.M., Deherrera, M., Engel, B.N., Rizzo, N.D.. Salter, J., Durlam, M., Dave, R.W., Janesky, J., Butcher, B., Smith, K. and Grynkewich, G., Proc. IEEE 91(5), 703 (2003).Google Scholar
5 Tsymbal, E.Yu, Mryasov, O.N. and LeClair, P.R., J. Phys.: Condens. Matter 15, R109 (2003).Google Scholar
6 Terris, B.D. and Thomson, T., J. Phys. D: Appl. Phys. 38, R199 (2005).Google Scholar
7 Allwood, D.A., Xiong, G., Cooke, M.D. and Cowburn, R.P., J. Phys. D: Appl. Phys. 36, 2175 (2003).Google Scholar
8 Fischer, P., Curr. Opin. Sol. Stat. Mat. Sci. 7, 173 (2003).Google Scholar
9 Magnetic Microscopy of Nanostructures edited by Hopster, H. and Oepen, H.P. (Springer, Berlin, Heidelberg, 2005).Google Scholar
10 Hale, M.E., Fuller, H.W. and Rubenstein, H., J. Appl. Phys. 30, 789 (1959).Google Scholar
11 Chapman, J.N., J.Phys. D: Appl.Phys. 17, 623 (1984).Google Scholar
12 De, M. Graef and Zhu, Y., J. Appl. Phys. 89, 7177 (2001).Google Scholar
13 Paganin, D. and Nugent, K.A., Phys. Rev. Lett. 80, 2586 (1998).Google Scholar
14 Chapman, J.N. and Morrison, G.R., J. Magn. Mag. Mat. 35, 254 (1983).Google Scholar
15 Daykin, A.C. and Petford-Long, A.K., Ultramicrosc. 58, 365 (1995).Google Scholar
16 Tonomura, A., Matsuda, T., Endo, J., Arii, T. and Mihama, K., Phys. Rev. Lett. 44, 1430 (1980).Google Scholar
17 Saxton, W.O., Pitt, T.J. and Horner, M., Ultramicrosc. 4, 343 (1979).Google Scholar
18 Lee, Y.K., Chun, B.S., Kim, Y.K., Hwang, I., Park, W., Kim, T., Kim, H., Lee, J. and Jeong, W.C., IEEE Trans. Mag. 41, 883(2005).Google Scholar
19 Okuno, T., Mibu, K. and Shinjo, T., J. Appl. Phys. 95, 3612 (2004).Google Scholar
20 Ross, C.A., Hwang, M., Shima, M., Cheng, J.Y., Farhoud, M., Savas, T.A., Smith, Henry I., Schwarzacher, W., Ross, F.M., Humphrey, F.B. and Redjdal, M., Phys. Rev. B 65 144417 (2002).Google Scholar
21 Portier, X., Petford-Long, A.K., Anthony, T.C. and Brug, J.A., J. Magn. Magn. Mater. 187, 145 (1998).Google Scholar