Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T10:19:56.496Z Has data issue: false hasContentIssue false

In-Situ Transmission Electron Microscopy of the Formation of Metal-Semiconductor Contacts

Published online by Cambridge University Press:  25 February 2011

J. M. Gibson
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
D. Loretto
Affiliation:
now at Max Planck Institut fur Metallforschung, Seestrasse 92, D-7000, Stuttgart, FRG.
D. Cherns
Affiliation:
University of Bristol, H. H. Wills Physics Laboratory, Royal Fort, Tyndall Ave, Bristol BS8 1TL, U.K.
Get access

Abstract

We have studied the formation of metal silicides in-situ in an ultra-high vacuum transmission electron microscope. Metals were deposited on in-situ cleaned, reconstructed silicon surfaces and annealed. For the metals Ni and Co, we find that the phase sequence in ultra-thin films is different from that seen in ≈1000 Å thick films, and attribute this to the high surface-to-volume ratio. In general reactions occur at room temperature, to form an epitaxial phase if possible. We report preliminary new results on the formation of Pd2Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] for a review see Tung, R. T. and Gibson, J. M., J. Vac. Sci. Technol. A 3, 987 (1985).CrossRefGoogle Scholar
[2] Takayanagi, K., Tanishiro, Y., Takahashi, M. and Takahashi, S., J. Vac. Sci. Technol. A 3, 1502 (1985).CrossRefGoogle Scholar
[3] Gibson, J. M., in “Surface and Interface Characterization by Electron Optical Methods”, ed. Howie, A. and Valdre, U. (Plenum, 1988).Google Scholar
[4] McDonald, M. L., Gibson, J. M. and Unterwald, F. C., Rev. Sci. Inst. 60, 700 (1989).CrossRefGoogle Scholar
[5] Gibson, J. M. and Batstone, J. L., Surf. Sci. 208, 317 (1988).CrossRefGoogle Scholar
[6] Tung, R. T. and Schrey, F., Appl. Phys. Lett. 55, 256 (1989).CrossRefGoogle Scholar
[7] Clevenger, L. A., Thompson, C. V., Cammarata, R. C. and Tu, K. N., Appl. Phys. Lett. 52, 795 (1988).CrossRefGoogle Scholar
[8] Tung, R. T., Gibson, J. M. and Levi, A. F. J., Appl. Phys. Lett. 48, 1264 (1986).CrossRefGoogle Scholar
[9] Gibson, J. M., Batstone, J. L. and Tung, R. T., Appl. Phys. Lett. 51, 45 (1987).CrossRefGoogle Scholar
[10] Tung, R. T., Levi, A. F. J. and Gibson, J. M., Appl. Phys. Lett. 48, 635 (1986).CrossRefGoogle Scholar
[11] Stiles, M. D. and Hamann, D. R., Phys. Rev. B 40, 1349 (1989).CrossRefGoogle Scholar
[12] Bulle Lieuwma, C. W. T., vanOmmen, A. H. and vanIjzendoom, L. J., Appl. Phys. Lett. 54, 249 (1989).CrossRefGoogle Scholar
[13] Yalisove, S. M., Eaglesham, D. J. and Tung, R. T., Appl. Phys. Lett. 55, 2075 (1989).CrossRefGoogle Scholar
[14] Loretto, D., Gibson, J. M. and Yalisove, S. M., Phys. Rev. Lett. 63, 298 (1989).CrossRefGoogle Scholar
[15] Nemanich, R. M., Doland, C. M. and Ponce, F. A., Mat. Res. Soc. Proc. 94, 139 (1987).CrossRefGoogle Scholar