Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T07:01:54.720Z Has data issue: false hasContentIssue false

In-situ XPS Study of ALD Ta(N) Barrier Formation onOrganosilicate Dielectric Surface

Published online by Cambridge University Press:  17 March 2011

Junjun Liu
Affiliation:
Laboratory for Interconnect and Packaging, Microelectronic Research Center, the University of Texas at Austin, Austin, TX 78712-1063, USA
Junjing Bao
Affiliation:
Laboratory for Interconnect and Packaging, Microelectronic Research Center, the University of Texas at Austin, Austin, TX 78712-1063, USA
Michael Scharnberg
Affiliation:
Lehrstuhl für Materuakverbunde, Technische Fakultät der Christian-Albrechts-Universität zu Kiel, Kaiserstr.2, D-24143 Kiel, Germany
Paul S. Ho
Affiliation:
Laboratory for Interconnect and Packaging, Microelectronic Research Center, the University of Texas at Austin, Austin, TX 78712-1063, USA
Get access

Abstract

Beams of nitrogen and hydrogen radicals were investigated as surfacepre-treatment and process enhancement techniques for atomic layer deposition(ALD) of tantalum nitride barrier layer on a dense organosilicate (OSG) lowk film. In-situ x-ray photoelectron spectroscopy (XPS)studies of the evolution of the low k surface chemistry revealed an initialtransient growth region controlled mainly by the substrate surfacechemistry. Pre-treatment of the low k surface with radical beams,particularly with nitrogen radicals, was found to enhance significantly thechemisorption of the TaCl5 precursor on the OSG surfaces. Theenhancement was attributed to the dissociation of the weakly bonded methylgroups from the low k surface followed by nitridation with the nitrogenradicals. In the subsequent linear growth region, atomic hydrogen specieswas able to reduce the chlorine content under appropriate temperature andwith sufficient purge. The role of the atomic hydrogen in this processenhancement is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zhou, Y., Xu, G., Scherban, T., Leu, J., Kloster, G.. and Wu, C., Char. and Metro. for ULSI Technology, 455–61 (2003)Google Scholar
2. Besling, W., Satta, A., Schuhmacher, J., Abell, T., Sutcliffe, V., Hoyas, A., Beyer, G., Gravesteijn, D., and Maex, K., Proceedings of the IEEE 2002 IITC, 288–91 (2002)Google Scholar
3. Satta, A., Baklanov, M., Richard, O., Vantomme, A., Bebder, H., Conard, T., Beyer, G., Maex, K., Li, W.M., Elers, K.E., and Haukka, S., Micro. Eng., 60, 59 (2002)CrossRefGoogle Scholar
4. Ryan, E.T., Freeman, M., Svedberg, L., Lee, J.J., Guenther, T., Connor, J., Yu, K., Sun, J. and Gidley, D., Mater., Tech. and Rel. for Adv. Inter. and Low-k Diel., Mater. Res. Soc. Vol. 766, p8994 (2003)Google Scholar
5. Abramowitz, P., Kiene, M. and Ho, P.S., Appl. Phys. Let., vol.74, no.22, 3293–531 (1999).CrossRefGoogle Scholar
6. Seah, M.P. and Spencer, S.J., J. Vac. Sci. Technol., A 21(2), 345352 (2003)CrossRefGoogle Scholar
7. Kim, H., J. Vac. Sci. Technol., B 21(6), p22312261 (2003)CrossRefGoogle Scholar
8. Briggs, D. and Seah, M.P., Practical Surface Analysis, Vol. 1 (1990)Google Scholar
9. Powell, C.J. and Jablonski, A., NIST Standard Reference Database 82, ver. 1.0 (2001)Google Scholar
10. Kim, H., Cabral, C. Jr, Lavoie, C., and Rossnagel, S.M., J. of Vac. Sci. and Tech., B 20(4), 13211326 (2002)Google Scholar
11. Ritala, M., Kalsi, P., Riihelä, D., Kukli, K., Leskelä, M., and Jokinen, J., Chem. of Mater., 11, 17121718 (1999)CrossRefGoogle Scholar
12. Lide, D.R., CRC Handbook of Chemistry and Physics, 81st Edition (2000)Google Scholar
13.Http://chemviz.ncsa.uiuc.edu/content/doc-resources-bond.htmlGoogle Scholar
14. Laskel, M.ä and Ritala, M., Thin Solid Films, 409 138146 (2002).CrossRefGoogle Scholar