Published online by Cambridge University Press: 05 April 2012
During irradiation in the reactor, a fraction of the fission product inventory will have segregated either to the gap between the fuel and the cladding or to the grain boundaries in the fuel. Of these nuclides, the behavior of the fission gases is best known. The part of the inventory that is rapidly released upon contact with water is designated the instant release fraction (IRF). Previous studies have shown that IRF and fission gas release (FGR) seem to be correlated. Studies of the instant release fraction from high burnup fuel is of interest for the assessment of the safety of a geological repository.
The instant release fractions of 129I and 137Cs from five different light water reactor (LWR) fuel rods with a burnup range of 43 to 75 MWd/kgU and a fission gas release range from 0.9 to 5.0 % were studied. Four types of fuel samples (pellet, fragment, powder and fuel rodlet) have been used in the experiments. The results show that the fuel sample preparation method has a significant impact on the release from high burnup fuel samples over the time period covered by this study. Leaching of high burnup fuel samples with fuel detached from the cladding shows the highest release. The fractional 129I release from such fragment samples is similar to the FGR in the corresponding rod. On the other hand, corresponding fractional release of 137Cs is lower.