Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-04T03:59:07.434Z Has data issue: false hasContentIssue false

Insulated Polyacetylene Chains in an Inclusion Complex by Photopolymerization

Published online by Cambridge University Press:  18 May 2015

Steluţa A. Dincă
Affiliation:
Department of Chemistry, Syracuse University, Syracuse, NY 13244-4100, U.S.A
Damian G. Allis
Affiliation:
Department of Chemistry, Syracuse University, Syracuse, NY 13244-4100, U.S.A
Amanda F. Lashua
Affiliation:
Department of Chemistry, Syracuse University, Syracuse, NY 13244-4100, U.S.A
Michael B. Sponsler
Affiliation:
Department of Chemistry, Syracuse University, Syracuse, NY 13244-4100, U.S.A
Bruce S. Hudson
Affiliation:
Department of Chemistry, Syracuse University, Syracuse, NY 13244-4100, U.S.A
Get access

Abstract

The properties of a material often depend on the degree of order of their atomic, molecular, or crystalline domain components. This is expected to be especially true for the case of polyacetylene, whose properties are highly anisotropic. For many applications, it may be necessary to have macroscopic order but not necessarily crystalline order. Having polyacetyelene chains fully extended and aligned parallel to each other may be sufficient for these applications even without order of the chains around their long axis. We report here progress in the use of an inclusion crystal containing a photo-reactive precursor to prepare high molecular weight polyacetylene. Raman spectroscopy was performed to probe the resulting conjugated polyene chains. Ultraviolet irradiation of a 1,4-diiodo-1,3-butadiene/urea inclusion complex results in the appearance of new resonance-enhanced Raman modes at 1125 and 1509 cm-1. The Raman spectra of the resulting confined polyene chains are very similar to freestanding isolated trans-polyacetylene prepared by solution methods.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Schwartz, B. J., Annu. Rev. Phys. Chem. 54, 141 (2003).CrossRefGoogle Scholar
Chien, J. C. W., Polyacetylene: Chemistry, physics and materials science (Academic, New York 1984).Google Scholar
Heeger, A. J., Angew. Chem. Int. Ed. 40, 2591 (2001).3.0.CO;2-0>CrossRefGoogle Scholar
Hollingsworth, M. D. and Harris, K. D. M., in Comprehensive Supramolecular Chemistry, Vol. 6 Solid-State Supramolecular Chemistry: Crystal Engineering, edited by MacNicol, D. D, Toda, F., and Bishop, R. (Pergamon Press/Elsevier, Oxford, 1996) pp. 177237.Google Scholar
Harris, K. D. M., Palmer, B.A., and Edwards-Gau, G. R., in Supramolecular Chemistry: From Molecules to Nanomaterials, edited by Gale, P. and Steed, J. (John Wiley & Sons, Ltd, 2012) pp. 124, and references therein.Google Scholar
Lashua, A. E., Smith, T. M., Hu, H., Wei, L., Allis, D. G., Sponsler, M. B., and Hudson, B. S., Cryst. Growth Des. 12, 3852 (2013).CrossRefGoogle Scholar
Zhao, J., Lui, H. I., McLean, D. I., and Zeng, H., Appl. Spectrosc. 61, 1225 (2007).CrossRefGoogle Scholar
Schuehler, D. E., Williams, J. E., and Sponsler, M. B., Macromol. 37, 6255 (2004).CrossRefGoogle Scholar
Harris, K. D. M., Phase Trans. 76, 205 (2003).CrossRefGoogle Scholar
Kropp, P. J., Acc. Chem. Res. 17, 131 (1984).CrossRefGoogle Scholar
Optical absorption measurements were performed to detect the iodine sublimation from these single crystals. DIBD/UICs were placed in a closed quartz cuvette and UV irradiated for 240 min at ca. 60° C. We found that the measured spectrum exhibited characteristic iodine vapor absorption features.Google Scholar
Fawcett, V. and Long, D. A., J. Raman Spectrosc. 3, 263 (1975).CrossRefGoogle Scholar
Casal, H. L., Appl. Spectrosc. 38, 306 (1984).CrossRefGoogle Scholar
Schaffer, H. E., Chance, R. R., Silbey, R. J., Knoll, K., and Schrock, R. R., J. Chem. Phys. 94, 4161 (1991).CrossRefGoogle Scholar
Harada, I., Furukawa, Y., Tasumi, M., Shirakawa, H., and Ikeda, S., J. Chem. Phys. 73, 4746 (1980).CrossRefGoogle Scholar
Izmaylov, A. F. and Scuseria, G. E., J. Chem. Phys. 127, 144106–1 (2007).CrossRefGoogle Scholar
Lichtmann, L. S., Imhoff, E. A., Sarhangi, A., and Fitchen, D. B., J. Chem. Phys. 81, 168 (1984).CrossRefGoogle Scholar
Ludwig, M. and Asher, S. A., Appl. Spectrosc. 42, 1458 (1988).CrossRefGoogle Scholar
Kohler, B. E. and Samuel, I. D. W., J. Chem. Phys. 103, 6248 (1995).CrossRefGoogle Scholar
Fitchen, D. B., Mol. Cryst. Liq. Cryst. 83, 95 (1982).CrossRefGoogle Scholar
Dincă, S. A., Allis, D. G., and Hudson, B. S.: in preparation.Google Scholar
Frisch, M. J. et al. , Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, (2013).Google Scholar
Dou, L., Zheng, Y., Shen, X., Wu, G., Fields, K., Hsu, W.-C., Zhou, H., Yang, Y., and Wudl, F., Science 343, 272 (2014).CrossRefGoogle Scholar
Hudson, B. S. and Allis, D. G., J. Molec. Struct. 1032, 78 (2013).CrossRefGoogle Scholar