Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-05T21:26:11.525Z Has data issue: false hasContentIssue false

Integrated Complementary-Like Circuits Based on Organic Ambipolar Transistors

Published online by Cambridge University Press:  01 February 2011

Thomas D. Anthopoulos
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
Dago M. de Leeuw
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
Sepas Setayesh
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
Eugenio Cantatore
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
Cristina Tanase
Affiliation:
Molecular Electronics, Materials Science CentrePlus, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
Paul W. M. Blom
Affiliation:
Molecular Electronics, Materials Science CentrePlus, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
Jan C. Hummelen
Affiliation:
Molecular Electronics, Materials Science CentrePlus, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
Get access

Abstract

We report on an approach towards integrated complementary-like circuits based on organic ambipolar transistors. In particular, we show that ambipolar transport can be achieved within a single transistor channel using gold electrodes and a solution processable polymer-small molecule blend as the electroactive material. To demonstrate the suitability of these devices for practical utilisation in logic circuits we realise complementary-like voltage inverters comprised entirely of ambipolar transistors. Moreover, by integrating several such inverters we are able to demonstrate more complex circuits such as ring oscillators.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Gelinck, G. H., Huitema, H. E. A., Veenendaal, E. van, Cantatore, E., Schrijnemakers, L., Putten, J. B. P. H. van der, Geuns, T. C. T., Beenhakkers, M., Giesbers, J. B., Huisman, B.-H., Meijer, E. J., Benito, E. M., Touwslager, F. J., Marsman, A. W., Rens, B. J. E. van and Leeuw, D. M. de, Nat. Mater. 3, 106 (2004).Google Scholar
2 Crone, B., Dodabalapur, A., Lin, Y.-Y., Fillas, R. W., Bao, Z., LaDuca, A., Sarpeshkar, R., Katz, H. E. and Li, W., Nature 403, 521 (2000).Google Scholar
3 Meijer, E. J., Leeuw, D. M. de, Setayesh, S., Veenendaal, E. van, Huisman, B.-H., Blom, P. W. M., Hummelen, J. C., Scherf, U. and Klapwijk, T. M., Nat. Mater. 2, 678 (2003).Google Scholar
4 Matsumura, M. and Nara, Y., J. Appl. Phys. 51, 6443 (1980).Google Scholar
5 Dodabalapur, A., Katz, H. E., Torsi, L. and Haddon, R. C., Science 296, 1560 (1995).Google Scholar
6 Tada, K., Harada, H., Yoshino, K., Jpn. J. Appl. Phys. 35, L944 (1996).Google Scholar
7 Anthopoulos, T. D., Tanase, C., Setayesh, S., Meijer, E. J., Hummelen, J. C., Blom, P. W. M. and Leeuw, D. M. de, Adv. Mater. 16, 2174 (2004).Google Scholar
8 Anthopoulos, T. D., Leeuw, D. M. de, Cantatore, E., Setayesh, S., Meijer, E. J., Tanase, C., Hummelen, J. C. and Blom, P. W. M., Appl. Phys. Lett. 85, 4205 (2004).Google Scholar
9 Anthopoulos, T. D., Leeuw, D. M. de, Cantatore, E., Hof, P. van't, Alma, J. and Hummelen, J. C., (submitted).Google Scholar