Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T10:33:28.199Z Has data issue: false hasContentIssue false

Integration of Materials and Device Research Enabled by Wafer Bonding and Layer Transfer

Published online by Cambridge University Press:  21 March 2011

Q.-Y. Tong*
Affiliation:
Wafer Bonding Lab., Research Triangle Institute and Ziptronix, RTP, NC 27709
Get access

Abstract

Wafer bonding and layer transfer technology has emerged as a versatile approach for integrated research and development of materials and devices. It does not only provide a flexible way to prepare integrated materials but also breaks the barrier between materials science and device engineering since it appears to be one of the fundamental technologies for 3-D device fabrication and for integration of partially or fully processed dissimilar functional layers. The device performance can be significantly enhanced when both sides of device layers can be processed such as in the double gate CMOS and in HBTs. The processed device layers can be considered as unique materials layers and can also be integrated. The integration of dissimilar integrated circuits provides a promising solution to realize micro-systems or system on a 3-D chip in which multi-functional layers are interconnected (3-D SOC). The main issues are to develop methods that form strong bond between required materials at low temperatures and to cut the device layer without compromising the device integrity by using VLSI compatible processes. The advances in low temperature bonding of hydrophilic and hydrophobic silicon, compound semiconductors and other materials in ambient are reviewed, and application examples are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lasky, J. B., Appl. Phys. Lett., 48 (1986) 7880.Google Scholar
2. Shimbo, M., Furukawa, K., Fukuda, K. and Tanzawa, K., J. Appl. Phys. 60 (1986) 29872989.Google Scholar
3. Nakamura, S., Horie, H., Asano, K., Fukano, T. and Sasaki, S., Tech. Dig. Int. Electron. Devices Meet., 889 (1995).Google Scholar
4. Lee, J.H., Taraschi, G., Wei, A., Langdo, T., Fitzgerald, E. and Antoniadis, D., Tech. Dig. Int. Electron. Devices Meet., 71 (1999).Google Scholar
5. Enquist, P.M. and Slater, D.B. Jr., U.S. Patent 5,318,916 (1994).Google Scholar
6. Hayashi, Y., Wada, S., Kajiyana, K., Oyama, K., Koh, R., takahashi, S and Kunio, T., Symp. VLSI Tech. Dig. 95 (1990)Google Scholar
7. Ramm, P., Buchner, R., U.S. Patent 5,563,084 (1995)Google Scholar
8. Stokbro, K. and Nielsen, E., Phys. Review B, 58(1998) 1618 Google Scholar
9. Bene, J. Del and Pople, J.A., J. Chem. Phys. 52(1970) 4858.Google Scholar
10. Tong, Q.-Y. and Gösele, U., Semiconductor Wafer Bonding: Science and Technology, John Wiley & Sons, New York, 1999.Google Scholar
11. Mitani, K., Lehmann, V., Stengl, R., Feijoo, D., Gösele, U. and Massoud, H. Z., Jpn. J. Appl. Phys. 30 (1991) 615.Google Scholar
12. Mack, S., Baumann, H., Gösele, U., Werner, H., and Schlögl, R., J. Electrochem. Soc, 144 (1997) 1106.Google Scholar
13. Tong, Q.-Y. and Goesele, U., J. Electroch. Soc., 142 (1995) 3975.Google Scholar
14. Tong, Q.-Y., Schmidt, E., Gösele, U. and Reiche, M., Appl. Phys. Lett. 64(1994) 625.Google Scholar
15. Maszara, W. P., Jiang, B.-L., Yamada, A., Rozgoni, G.A., Baumgart, H., and Kock, A.J.R. De, J. Appl. Phys., 69(1991) 257.Google Scholar
16. Bruel, M., Electronics Lett., 31(1995) 1201.Google Scholar
17. En, W.G., Malik, I.J., Bryan, M.A., Farrens, S., Henley, F.J., Cheung, N.W. and Chan, C., Proc. IEEE Int. SOI Conf. P8CH36199, p. 163 (1998).Google Scholar
18. Sakaguchi, K., Yanagita, K., Kurisu, H., Suzuki, H., Ohmi, K. and Yonehara, T., Proc. of 1999 IEEE Int. SOI Conf. 99CH36345, p.111 (1999).Google Scholar
19. Tong, Q.-Y. and Goesele, U., Advanced Materials, 17 (1999) 1.Google Scholar
20. Gösele, U., Stenzel, H., Martini, T., Steinkirchner, J., Conrad, D. and Scheerschmidt, K., Appl. Phys. Lett., 67 (1995) 3614.Google Scholar
21. Akatsu, T., Ploessl, A., Stenzel, H. and Goesele, U., J. Appl. Phys. 86 (1999) 7146.Google Scholar
22. Takagi, H., Maeda, R., Hosoda, N. and Suga, T., Appl. Phys. Lett., 74 (1999) 2387.Google Scholar
23. Shimatsu, T., Mollema, R.H., Monsma, D., Keim, E.G. and Lodder, J.C., J. Vac. Technol. A 16(4) (1998) 2125.Google Scholar
24. Bengtsson, S. and Amirfeiz, P., J. Electronic Materials, 29 (2000) 909.Google Scholar
25. Tong, Q.-Y. et al. , US Patent pending.Google Scholar
26. Tong, Q.-Y., US Patent pending.Google Scholar
27. Gupta, P., Colvin, V. and Geroge, S., Phys. Rev. B, 37(1988) 8234.Google Scholar
28. Chu, W.K., Kastl, R.H., Lever, R.F., Mader, S. and Masters, B.J., Phys. Rev. B, 16 (1987) 3851.Google Scholar
29. Pearton, S.J., Corbett, J.W. and Shi, T.S., Appl. Phys. A, 43 (1987) 153.Google Scholar
30. Tong, Q.-Y., Scholtz, R., Goesele, U., and Lee, T.-H., Huang, L.-J., Chao, Y.-L., and Tan, T.Y., Appl. Phys. Lett. 72 (1998) 49.Google Scholar