Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T14:07:45.661Z Has data issue: false hasContentIssue false

Intense Photoluminescence and Photoluminescence Enhancement upon Ultraviolet Irradiation in HYydrogenated Nanocrystalline Silicon Carbide

Published online by Cambridge University Press:  14 March 2011

M.B. Yu
Affiliation:
School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore, 639798, Republic of Singapore
Rusli
Affiliation:
School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore, 639798, Republic of Singapore
S.F. Yoon
Affiliation:
School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore, 639798, Republic of Singapore
S.J. Xu
Affiliation:
Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China
K. Chew
Affiliation:
School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Republic of Singapore
J. Cui
Affiliation:
School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Republic of Singapore
J. Ahn
Affiliation:
School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Republic of Singapore
Q. Zhang
Affiliation:
School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Republic of Singapore
Get access

Abstract

Hydrogenated nanocrystalline silicon carbide (nc-SiC:H) films were deposited in an electron cyclotron resonance chemical vapor deposition (ECR-CVD) system using silane (SiH4) and methane (CH4) as source gases. It was discovered that under the deposition conditions of strong hydrogen dilution and high microwave power, nanocrystalline grains embedded in an amorphous matrix can be obtained, as confirmed by TEM study. Steady state and time-resolved photoluminescence (PL) from these films were investigated. The films exhibit intense visible PL at room temperature under laser excitation. The PL emission peaks at 2.64 eV, which is higher in energy compared to the bandgap of cubic SiC. Temporal evolution of the emission peak exhibits a double-exponential decay. Two distinct decay times of 179 ps and 2.88 ns were identified, which are at least 2 orders of magnitude faster than that of bound excition transitions in bulk 3C- SiC at low temperature. It was found that upon ultraviolet irradiation using an Ar+ laser (351nm) the PL intensity of the films was enhanced. After 20 minutes irradiation, the PL intensity increased by about three times. This result suggests that the UV light may lead to modification of nonradiative recombination centers in the films. These nc-SiC:H films are promising for application in large area flat panel displays and in optoelectronic storage technology.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schlamp, M.C., Peng, X. and Alivisators, A.P., J.Appl.Phys. 82, 5837 (1997)Google Scholar
2. Hirschman, K.D., Tsybeskov, L., Duttagupta, S.P. and Fauchet, P.M., Nature (London) 384, 338 (1996)Google Scholar
3. Min, K.S., Shcheglov, K.V., Yang, C.M., Atwater, H.A., Brongersma, M.L. and Polman, A., Appl. Phys. Lett. 69, 2033 (1996)Google Scholar
4. Kanemitsu, Yoshihiko, Phys. Rev. B 48, 4883 (1993)Google Scholar
5. Furukawa, S. and Miyasato, T., Jpn. J. Appl. Phys., Part 2 27, L2207 (1988)Google Scholar
6. Augustine, B.H., Irene, E.A., He, Y.J., Price, K.J., Mcneil, L.E., Christensen, K.n. and Maher, D.M., J.Appl. Phys. 78. 4020 (1995)Google Scholar
7. Hayashi, S., Kataoka, M. and Yamamoto, K., Jpn. J. Appl. Phys., Part2 32, L274 (1993)Google Scholar
8. Dutta, A.K., Appl. Phys. Lett. 68, 1189 (1996)Google Scholar
9. White, C.W., Budai, J.D., Zhu, J.G., Withrow, S.P., Zuhr, R.A., Hembree, D.M. Jr., Henderson, D.O., Ueda, A., Tung, Y.S., Mu, R. and Magruder, R.H., J.Appl. Phys. 79, 1876 (1996)Google Scholar
10. Wolk, J.A., Yu, K.M., Bourret-Courchesne, E.D. and Johnson, E., Appl. Phys. Lett. 70, 2268 (1997)Google Scholar
11. Zarrabian, M., Fourches-Coulon, N., Turban, G., Marhic, C. and Lancin, M., Appl. Phys. Lett. 70, 2535 (1997)Google Scholar
12. Ikeda, M., Hayakawa, T., Yamagiwa, S., Matsunami, H. and Tanaka, T., J.Appl.Phys. 50, 8215 (1979)Google Scholar
13. Hoffman, L., Ziegler, G., Theis, D. and Weyrich, C., J. Appl. Phys. 53, 6962 (1982)Google Scholar
14. Matsumoto, T., Takahashi, J., Tamki, T., Futagi, T. and Mimura, H., Appl. Phys. Lett. 64, 226 (1994)Google Scholar
15. Liao, Liang-Sheng, Bao, Xi-Mao, Yang, Zhi-Feng and Min, Nai-Ben, Appl. Phys. Lett. 66, 2382 (1995)Google Scholar
16. Yoon, S.F.. Yang, H., , Rusli, Ahn, J., Zhang, Q. and Poo, T.L., Diamond Relat. Mater. 6, 1638 (1997)Google Scholar
17. Yu, M.B., , Rusli, Yoon, S.F., Xu, S.J., Chew, K., Ahn, J. and Zhang, Q., International conference on metallurgical coatings and thin films, April 10-14, 2000, San Diego, USA Google Scholar
18. Park, Y.S., SiC Materials and Devices (Academic Press, Lond, UK, 1998), Semiconductors and Semimetals Vol. 52, P14.Google Scholar
19. Wilcoxon, J. P. and Samara, G. A., Appl. Phys. Lett. 74, 3164 (1999).Google Scholar
20. Toyama, T., Kotani, Y., Shimode, A., and Okamoto, H., Appl. Phys. Lett. 74, 3323 (1999)Google Scholar
21. Bergman, J. P., Janzén, E., Sridhara, S. G., and Choyke, W., Silicon Crabide, III-Nitrides and Related Materials: Part I (Trans Tech Publications Ltd, Switzerland, 1998), p485.Google Scholar
22. Hooft, G. W. 't, Poel, W. A. J. A. van der, and Molenkamp, L. W., Phys. Rev. B 35, 8281 (1987)Google Scholar
23. Brandt, O., Ringling, J., Ploog, K.H., Wünsche, H-J, Henneberger, F., Phys. Rev. B 58, R15977 (1998)Google Scholar
24. Feldmann, J., Peter, G., Göbel, E. O., Dawson, P., Moore, K., Foxon, C., and Elliott, R. J., Phys. Rev. Lett. 59, 2337 (1987)Google Scholar
25. Lefebvre, P., Allègre, J., Gil, B., Kavokine, A., Mathieu, H., Kim, W., Salvador, A., Botchkarev, A., and Morkoc, H., Phys. Rev. B 57, R9447 (1998)Google Scholar
26. Colocci, M., Vinattieri, A., Lippi, L., Bogani, F., Rosa-Clot, M., Taddei, S., Bosacchi, A., Franchi, S., and Frigeri, P., Appl. Phys. Lett. 74, 564 (1999)Google Scholar
27. Bellesa, J., Voliotis, V., Grousson, R., Wang, X. L., Ogura, M., and Matsuhata, H., Phys. Rev. B 58, 9933 (1998)Google Scholar
28. Chernyshov, S. V., Terukov, E. I., Vassilyev, V. A. and Volkov, A. S., J. Non-Cryst. Solids 34, 218 (1991)Google Scholar