Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T10:33:52.245Z Has data issue: false hasContentIssue false

Interaction of Cavities and Dislocations in Semiconductors

Published online by Cambridge University Press:  15 February 2011

D. M. Follstaedt
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1056, (dmfolls@sandia.gov)
S. M. Myers
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1056, (dmfolls@sandia.gov)
S. R. Lee
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1056, (dmfolls@sandia.gov)
J. L. Reno
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1056, (dmfolls@sandia.gov)
R. L. Dawson
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1056, (dmfolls@sandia.gov)
J. Han
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1056, (dmfolls@sandia.gov)
Get access

Abstract

Transmission electron microscopy of He-implanted Si-Ge and InGaAs shows an attractive interaction between cavities and dislocations. Calculation indicates that cavities are attracted to dislocations through surrounding strain fields, and strong binding (100s of eV) occurs when a cavity intersects the core. In a strained SiGe/Si heterostructure, He implantation enhances relaxation rates, and cavities bound to misfit dislocations show evidence of increasing relaxation at equilibrium by lowering dislocation energies. The interaction is expected for all crystalline solids, and gives insight into voids in GaN/sapphire and bubbles in He-implanted metals.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Griffioen, C. C., Evans, J. H., de Jong, P. C. and Van Veen, A., Nucl. Inst. Meth. B27, 417 (1987).Google Scholar
2. Myers, S. M., Follstaedt, D. M., Stein, H. J. and Wampler, W. R., Phys. Rev. B47, 13380 (1993).Google Scholar
3. Follstaedt, D. M., Myers, S. M., Petersen, G. A. and Barbour, J. C., Mater. Res. Soc. Symp. Proc. 396, 801 (1996).Google Scholar
4. Follstaedt, D. M., Myers, S. M. and Lee, S. R., Appl. Phys. Lett. 69, 2059 (1996).Google Scholar
5. Follstaedt, D. M., Myers, S. M., Floro, J. A. and Lee, S. R., Nucl. Inst. Meth. B, in press.Google Scholar
6. Myers, S. M., unpublished work.Google Scholar
7. Tsao, J. Y., Materials Fundamentals for Molecular Beam Epitaxy (Academic, Boston, 1993).Google Scholar
8. Specimen grown as in Myerson, B. S., Appl. Phys. Lett. 48, 797 (1986).Google Scholar
9. Follstaedt, D. M., Myers, S. M., Petersen, G. A. and Medernach, J. W., J. Electron. Mater. 25, 151 (1996).Google Scholar
10. Hull, R., Bean, J. C., Bonar, J. M., Higashi, G. S., Short, K. T., Temkin, H. and White, A. E., Appl. Phys. Lett. 56, 2445 (1990).Google Scholar
11. LeGoues, F., Eberl, K. and Iyer, S. S., Appl. Phys. Lett. 60, 2862 (1992).Google Scholar
12. Forty, A. J., in Dislocations in Solids (The Faraday Society, London, 1964), Vol.38, p. 56.Google Scholar
13. Follstaedt, D. M., Han, J., Biefeld, R. M. and Weckwerth, M., unpublished work.Google Scholar
14. Qian, W., Rohrer, G. S., Skowronski, M., Doverspike, K., Rowland, L. B. and Gaskill, D. K., Appl. Phys. Left. 67, 2284 (1995).Google Scholar
15. Follstaedt, D. M. and Myers, S. M., 40th Ann. Proc. Electron Microscopy Soc. America (San Francisco Press, 1982), p. 590.Google Scholar