Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T20:28:24.937Z Has data issue: false hasContentIssue false

Interactions of Ge Atoms with High- ê Oxide Dielectric Surfaces

Published online by Cambridge University Press:  15 February 2011

Scott K. Stanley
Affiliation:
Department of Chemical Engineering, The University of Texas at Austin Austin, Texas USA
John G. Ekerdt
Affiliation:
Department of Chemical Engineering, The University of Texas at Austin Austin, Texas USA
Get access

Abstract

Ge is deposited on HfO2 surfaces by chemical vapor deposition (CVD) with GeH4. 0.7-1.0 ML GeHx (x = 0-3) is deposited by thermally cracking GeH4 on a hot tungsten filament. Ge oxidation and bonding are studied at 300-1000 K with X-ray photoelectron spectroscopy (XPS). Ge, GeH, GeO, and GeO2 desorption are measured with temperature programmed desorption (TPD) at 400-1000 K. Ge initially reacts with the dielectric forming an oxide layer followed by Ge deposition and formation of nanocrystals in CVD at 870 K. 0.7-1.0 ML GeHx deposited by cracking rapidly forms a contacting oxide layer on HfO2 that is stable from 300-800 K. Ge is fully removed from the HfO2 surface after annealing to 1000 K. These results help explain the stability of Ge nanocrystals in contact with HfO2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tiwari, S., Rana, F., Hanafi, H., Hartstein, A., Crabbe, E. F., Chan, K., Appl. Phys. Lett 68 (10), 13771379 (1996).Google Scholar
2. Hanafi, H. I., Tiwari, S., and Khan, I., Ieee Transactions on Electron Devices 43 (9), 15531558 (1996).Google Scholar
3. Yang, H. G., Shi, Y., Pu, L., Zhang, R., Shen, B., Han, P., Gu, S. L., Zheng, Y. D., Appl. Sur. Sci. 224 (1-4), 394398 (2004).Google Scholar
4. Kim, D. W., Kim, T., and Banerjee, S. K., Ieee Transactions on Electron Devices 50 (9), 18231829 (2003).Google Scholar
5. Kita, K., Kyuno, K., and Toriumi, A., Appl. Phys. Lett. 85 (1), 5254 (2004).Google Scholar
6. Leach, W. T., Zhu, J. H., and Ekerdt, J. G., Journal of Crystal Growth 243 (1), 3040 (2002).Google Scholar
7. Leach, W. T., Zhu, J. H., and Ekerdt, J. G., Journal of Crystal Growth 240 (3-4), 415422 (2002).Google Scholar
8. Wang, Y. Q., Chen, J. H., Yoo, W. J., Yeo, Y. C., in Materials and Processes for Nonvolatile Memories, edited by Claverie, A., Tsoukalas, D., King, T-J., and Slaughter, J.M. (Mater. Res. Soc. Symp. Proc. 830, Warrendale, PA, 2005) D6.3.Google Scholar
9. Gupta, R., et al., Appl. Phys. Lett. 84 (21), 43314333 (2004).Google Scholar
10. Stanley, S. K., Coffee, S. C., and Ekerdt, J. G., in Materials and Processes for Nonvolatile Memories, edited by Claverie, A., Tsoukalas, D., King, T-J., and Slaughter, J.M. (Mater. Res. Soc. Symp. Proc. 830, Warrendale, PA, 2005), D1.8.Google Scholar
11. Stanley, S. K., Coffee, S. C., and Ekerdt, J. G., Appl. Surf. Sci. (in press).Google Scholar