Published online by Cambridge University Press: 01 February 2011
Microelectromechanical Systems (MEMS) market is a rapidly growing market with a wide range of devices. Most of these devices require an interaction with an electronic circuit, and with the increasing number of high performance MEMS devices that are being introduced, a demand for integrating CMOS and MEMS using high-density and low-parasitic interconnects have also been on the rise.
Unfortunately, conventional methods of integrating CMOS with MEMS cannot provide the high density and low-parasitic interconnections required by modern high performance MEMS devices, and at the same time provide the flexibility required to accommodate new devices that are made using new materials and highly innovative fabrication processes.
Heterogeneous 3D integration of MEMS and CMOS has the potential to provide both the performance and the integration flexibility; however there are two interconnect challenges that need to be addressed. This paper outlines the details of these interconnect challenges and introduces two interconnect technologies, Mechanically Flexible Interconnects (MFI) and Through-Silicon Via (TSV), developed specifically to address these challenges.