Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T14:17:37.838Z Has data issue: false hasContentIssue false

Interfacial Interaction Between Cr Thin Films and Oxide Glasses

Published online by Cambridge University Press:  10 February 2011

N. Jiang
Affiliation:
School of Applied and Engineering Physics and Cornell Center for Materials Research, Cornell University, Ithaca, NY 14853, njiang@ccmr.cornell.edu
J. Silcox
Affiliation:
School of Applied and Engineering Physics and Cornell Center for Materials Research, Cornell University, Ithaca, NY 14853, njiang@ccmr.cornell.edu
Get access

Abstract

The interfacial interaction between Cr thin films and multi-component oxide glasses has been observed by means of high spatial resolution electron energy loss spectroscopy. Besides a partially oxidized Cr thin layer, a ∼5nm wide Cr diffusion layer is seen. Chromium oxidation at the interface results from the difference between the heats of oxide formation. Ion exchange between Cr2+ and alkaline earth ions then causes the formation of the diffusion layer. The electronic states of the Cr in this diffusion layer are different from that in the oxidized layer. Strong interaction between Cr and O in the diffusion layer suggests that such a layer could be responsible for the formation of a strong Cr/glass interface

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Benjamin, P. and Weaver, C., Proc. Roy. Soc. London A 261, 516 (1961).Google Scholar
2.Onyiriuka, E. C., Kinney, L. D. and Minkowski, N. J., J. Adhesion Sci. Technol. 11, 929 (1997).Google Scholar
3.Batson, P. E., Nature (London) 366, 727 (1993); N. D. Browning, M.F. Chisholm, and S. Pennycook, ibid. 366, 143 (1993); D. A. Muller, Y. Tzou, R. Raj, and J. Silcox, ibid. 366, 725 (1993).Google Scholar
4.Tian, L. and Dieckmann, R., J. Non-Cryst., in press.Google Scholar
5.Jiang, N. and Silcox, J., in preparation.Google Scholar
6.Taftø, J. and Krivanek, O. L., Phys. Rev. Lett. 48, 560 (1982).Google Scholar
7.Wallis, D. J., Gaskell, P. H. and Brydson, R., J. Microsc. 180, 307 (1995).Google Scholar
8.Muller, D. A., Sorsch, T., Moccio, S., Baumann, F. H., Evans-Lutterodt, K. and Timp, G., Nature (London) 399, 758 (1999).Google Scholar
9.Grunes, L. A., Leapman, R. D., Wilker, C. N., Hoffmann, R. and Kunz, A. B., Phys. Rev. B 25, 7157 (1982).Google Scholar
10.Neaton, J. B. and Ashcroft, N. W., private communication.Google Scholar
11.CODATA Key Values for Thermodynamics, in CRC Handbook of Chemistry and Physics, 79th, 5–1 (1998-1999).Google Scholar
12.Reed, T. B., Free Energy of Formation of Binary Compounds, (MIT press, Cambridge, 1971).Google Scholar
13.Leapman, R. D., Grunes, L. A. and Fejes, P. L., Phys. Rev. B 26, 614 (1982).Google Scholar
14.Frischat, G. H., Ionic Diffusion in Oxide Glasses, Diffusion Monograph Series No3/4, edited by Adda, Y. et al. , (Trans. Tech. Publications, 1975).Google Scholar
15.Miedema, A. R., Boom, R., and Boer, F. R. de, J Less-common metals 41, 283 (1975).Google Scholar
16.Boer, F. R. de, Boom, R., Mattens, W. C. M., Miedema, A. R. and Niessen, A. K., Cohesion in Metals: Transition Metal Alloys, (North-Holland, Amsterdam, 1988).Google Scholar