Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-04T06:07:38.720Z Has data issue: false hasContentIssue false

Interfacial Polymerization of Molecular Squares: Thin Microporous Membranes Featuring Size Selective Transport

Published online by Cambridge University Press:  11 February 2011

Jodi L. O′Donnell
Affiliation:
Department of Chemistry and Center for Nanofabrication and Molecular Self-Assembly, Northwestern University, Evanston, IL 60208–3113, USA
Melinda H. Keefe
Affiliation:
Department of Chemistry and Center for Nanofabrication and Molecular Self-Assembly, Northwestern University, Evanston, IL 60208–3113, USA
Joseph T. Hupp
Affiliation:
Department of Chemistry and Center for Nanofabrication and Molecular Self-Assembly, Northwestern University, Evanston, IL 60208–3113, USA
Get access

Abstract

Flat porphyrin molecules have been linked at right angles, using metal atoms, to create square or open-ended box structures having minimum cavity widths of about 2.4 nm and nominal volumes of ca. 14 nm3. Chemically modified versions of the squares feature reactive hydroxyl groups at the top and bottom of each of the four walls of the box structure. These groups combine readily with acid chloride functionalized molecules to yield robust ester linkages. If the reactions are carried out at a liquid-liquid interface with squares in one layer and difunctional acid chloride linkers in the other, polymer formation occurs at the interface. As with other liquid-liquid interfacial polymerizations, the reaction is self-limiting because transport of reactants is inhibited by membrane formation. Polymer films prepared by this method have controllable thicknesses ranging from about 200 nm to 2 microns. The membranes display size-selective porosity with respect to molecules smaller than the intra-square cavity and blocking behavior with respect to larger molecules. Electrochemical and electrochemiluminescence methods are used to measure qualitative and quantitative sieving behavior by employing a conductive metal or ceramic electrode as an underlying platform. In these and related membranes, selective molecular transport is being engineered for applications such as chemical sensing, energy conversion, and chemical catalysis.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1 Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O′Keeffe, M., and Yaghi, O. M., Acc. Chem. Res. 34 (4), 319330 (2001).CrossRefGoogle Scholar
2 Newkome, G. R., He, E., and Moorefield, C. N., Chem. Rev. 99 (7), 16891746 (1999).CrossRefGoogle Scholar
3 Fujita, M., Chem. Soc. Rev. (27), 417 (1998).CrossRefGoogle Scholar
4 Stang, P. J., Chem. Soc. Rev. 27, 289 and therein (1998).Google Scholar
5 Holliday, B. J. and Mirkin, C. A., Angew. Chem. Int. Ed. 410, 2022 (2001).3.0.CO;2-D>CrossRefGoogle Scholar
6 Dinolfo, P. H. and Hupp, J. T., Chem. Mater. 13 (10), 31133125 (2001).CrossRefGoogle Scholar
7 Slone, R. V., Hupp, J. T., Stern, C. L., and Schmitt, T. E. A., Inorg. Chem. 35, 4096 (1996).CrossRefGoogle Scholar
8 Slone, R. V. and Hupp, J. T., Inorg. Chem. 36, 5422 (1997).CrossRefGoogle Scholar
9 Massari, A. M., Gurney, R. W., Huang, C.-H. K., Wightman, M., Nguyen, S. T., and Hupp, J. T., Polyhedron, submitted. (2002).Google Scholar
10 O'Donnell, J. L., Keefe, M. H., Bailey, R. C., and Hupp, J. T., J. Am. Chem. Soc., submitted. (2002).Google Scholar
11 Bélanger, S. and Hupp, J. T., Angew. Chem., Int. Ed. Engl. 38 (15), 22222224 (1999).3.0.CO;2-4>CrossRefGoogle Scholar
12 Bélanger, S., Hupp, J. T., Stern, C. L., Slone, R. V., Watson, D. F., and Carrell, T. G., J. Am. Chem. Soc. 212, 557 (1999).CrossRefGoogle Scholar
13 Williams, M. E. and Hupp, J. T., Proceedings of the Materials Research Society 676, Y1.5.1–Y1.5.10 (2001).CrossRefGoogle Scholar
14 Williams, M. E. and Hupp, J. T., J. Phys. Chem. B 105 (37), 89448950 (2001).CrossRefGoogle Scholar
15 Zhang, J., Williams, M. E., Keefe, M. H., Morris, G. A., Nguyen, S. T., and Hupp, J. T., Electrochem. Solid State Lett. 5 (5), E25–E28 (2002).CrossRefGoogle Scholar
16 Czaplewski, K. F., Li, J., Hupp, J. T., and Snurr, R. Q., J. of Membrane Sci., submitted. (2002).Google Scholar
17 Keefe, M. H., Slone, R. V., Hupp, J. T., Czaplewski, K. F., Snurr, R. Q., and Stern, C. L., Langmuir 16, 39643970 (2000).CrossRefGoogle Scholar
18 Mines, G. A., Tzeng, B., Stevenson, K. J., Li, J., and Hupp, J. T., Angew. Chem. Int. Ed. 41, 154157 (2002).3.0.CO;2-F>CrossRefGoogle Scholar
19 Zhang, J., Hupp, J. T., and Nguyen, S. T., unpublished results.Google Scholar
20 Splan, K. E. and Massari, A. M., unpublished results.Google Scholar
21 Arsenault, G. P., Bullock, E., and MacDonald, S. F., J. Am. Chem. Soc. 82, 43844389 (1960).CrossRefGoogle Scholar
22 MacDonald, S. F., J. Am. Chem. Soc. 79, 2659 (1957).CrossRefGoogle Scholar
23 LeCours, S. M., DiMagno, S. G., and Therien, M. J., J. Am. Chem. Soc. 118 (47), 1185411864 (1996).CrossRefGoogle Scholar
24 DiMagno, S. G., Lin, V. S. Y., and Therien, M. J., J. Org. Chem. 58 (22), 59835993 (1993).CrossRefGoogle Scholar
25 Wamser, C. C., Mol. Cryst. Liq. Cryst. 194, 6573 (1991).CrossRefGoogle Scholar
26 Wamser, C. C., Bard, R. R., Senthilathipan, V., Anderson, V. C., Yates, J. A., Lonsdale, H. K., Rayfield, G. W., Friesen, D. T., and Lorenz, D. A., J. Am. Chem. Soc. 111 (22), 84858491 (1989).CrossRefGoogle Scholar
27 Wamser, C. C., Lebzelter, J., and Ryu, C.-H., Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 37 (2), 384385 (1996).Google Scholar
28 Williams, M. E., Stevenson, K. J., Massari, A. M., and Hupp, J. T., Anal. Chem. 72, 31223128 (2000).CrossRefGoogle Scholar
29 Bard, A. J., Denuault, G., Lee, C., Mandler, D., and Wipf, D. O., Acc. Chem. Res. 23, 357 (1990).CrossRefGoogle Scholar
30 Williams, M. E., Benkstein, K. D., Abel, C., Dinolfo, P. H., and Hupp, J. T., Proc. Natl. Acad. Sci. 99, 51715177 (2002).CrossRefGoogle Scholar