Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T07:07:53.719Z Has data issue: false hasContentIssue false

Interfacial Reactions Between Metal Thin Films and p-GaN

Published online by Cambridge University Press:  21 February 2011

J.T. Trexler
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611-6400
S.J. Miller
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611-6400
P.H. Holloway
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611-6400
M.A. Khan
Affiliation:
APA Optics Inc., 2950 NE 84th Lane, Blaine, MN 55449.
Get access

Abstract

The reactions between Au, Au/Ni and Au/C/Ni thin films on p-GaN have been studied using current-voltage (I-V) measurements, Auger electron spectroscopy (AES) and secondary ion mass spectrometry (SIMS). The metallization schemes consisted of ≈2000Ǻ sputtered Au, 1000Ǻ Au/500Ǻ Ni, and 1000Ǻ Au/100Ǻ C/500Ǻ Ni electron beam evaporated. The Au/Ni metallization scheme is of particular interest since it is the basis for the most commonly used ohmic p-type contacts for blue GaN LED’s. Au does not decompose the GaN matrix, while Ni has been shown to react with GaN above a temperature of 400° C for times longer than 5 minutes. Upon decomposition of the GaN by Ni, incorporation of C at the metal/GaN interface occurred. It is believed that a regrowth of GaN occurred, with the surface region being doped with C. Attempts at increasing this doping concentration by introducing an interfacial C layer were not successful.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Maruska, H.P. and Tietjen, J.J., Appl. Phys. Lett. 15, 327 (1969).Google Scholar
2 Pankove, J., J. of Lumin. 7, 114 (1973).Google Scholar
3 Jenkins, D.W. and Dow, J.D., Phys. Rev. B 39, 3317, (1989).Google Scholar
4 Nakamura, S., Mukai, T., Senoh, M., and Iwasa, N., Jpn. J. Appl. Phys. 31, LI39 (1992).Google Scholar
5 Nakamura, S., Iwasa, N., Senoh, M., and Mukai, T., Jpn. J. Appl. Phys. 31, 1258 (1992).Google Scholar
6 Inamori, M., Sakai, H., Tanaka, T., Amano, H., Akasaki, I., Jpn. J. Appl. Phys. 34, 1190 (1995).Google Scholar
7 Amano, H., Kito, M., Hiramatsu, K., and Akasaki, I., Jpn. J. Appl. Phys. 28, L2112 (1989).Google Scholar
8 Nakamura, S., Mukai, T., and Senoh, M., Jpn. J. Appl. Phys. 30, LI998 (1991).Google Scholar
9 Lin, M.E., Ma, Z., Huang, F.Y. and Morkoc, H., Appl. Phys. Lett. 64, 2557 (1994).Google Scholar
10 Sze, S.M., Physics of Semiconductor Devices. 2nd ed. (John Wiley + Sons Inc. Publishers, New York, 1981) p. 251.Google Scholar
11 Nakamura, S., Senoh, M., and Mukai, T., Jpn. J. Appl. Phys. 32, L8 (1993).Google Scholar
12 Nakamura, S., Senoh, M., and Mukai, T., Appl. Phys. Lett. 62, 2390 (1993).Google Scholar
13 Nakamura, S., Mukai, T., Senoh, M., Appl. Phys. Lett. 64, 2557 (1994).Google Scholar
14 Bermudez, V. M., Kaplan, R., Khan, M.A., and Kuznia, J.N., Phys. Rev. B. 48, 2436 (1993).Google Scholar
15 Lin, M.E., Ma, Z., Huang, F.Y., Fan, Z.F., Allen, L.H., and Morkoc, H., Appl. Phys. Lett. 64, 8 (1994).Google Scholar
16 Abernathy, C.R., MacKenzie, J.D., Pearton, S.J., Hobson, W.S., Appl. Phys. Lett. 66, 1969 (1995).Google Scholar