Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T14:18:36.885Z Has data issue: false hasContentIssue false

Interplay of Strain, Growth Kinetics and Surface Bonding in Growth Modes and Dislocation Generation in Strained Heteroepitaxy

Published online by Cambridge University Press:  25 February 2011

C. Snyder
Affiliation:
Department of Physics University of Michigan, Ann Arbor, Michigan 48109
J. Pamulapati
Affiliation:
Department of Electrical Engineering and Computer Science University of Michigan, Ann Arbor, Michigan 48109
B. Orr
Affiliation:
Department of Physics University of Michigan, Ann Arbor, Michigan 48109
P. K. Bhattacharya
Affiliation:
Department of Electrical Engineering and Computer Science University of Michigan, Ann Arbor, Michigan 48109
J. Singh
Affiliation:
Department of Electrical Engineering and Computer Science University of Michigan, Ann Arbor, Michigan 48109
Get access

Abstract

In this paper we examine the role of strain and growth kinetics on the growth modes in pseudomorphic growth. Regimes below critical thickness and above critical thickness are examined. Based on atomistic modelling and in-situ RHEED and STM studies we show that a competition between surface chemical energy and strain energy is shown to lead to 3-dimensional blend mode for high strain pseudomorphy. Consequences for dislocation generation are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fisher, R., Masselink, W. T., Klem, J., Henderson, T., McGillen, T. C., Klein, M. V., Morkoc, H., Mazur, J., and Washburn, J., J. Appl. Phys. 58, 374 (1985).Google Scholar
2. Uppal, P. N. and Kroemer, H., J. Appl. Phys. 58, 2195 (1985).Google Scholar
3. Hashimoto, A., Kawarada, Y., Kamijohn, T., Akiyama, M., Watanabe, N., and Sakuta, M., Appl. Phys. Lett. 48, 1617 (1986).Google Scholar
4. Kolodziejski, L., Gunshor, R. C., Otsuka, N., Zheng, X., Cheng, S. K., and Nurmikko, A. V., Appl. Phys. Lett. 47, 882 (1985).Google Scholar
5. Osbourn, G., Schirber, J., Drummond, T., Dawson, L., Doyle, B., and Fritz, I., Appl. Phys. Lett. 49, 731, 1986.Google Scholar
6. Osbourn, G., J. Vac-Sci. Technol. 53, 1586 (1985)Google Scholar
7. Jaffe, M. and Singh, J., J. Appl. Phys. 64, 1988.Google Scholar
8. Ketterson, A., Masselink, W., Gedymin, J., Klem, J., Peng, C., Kopp, W., Morkoc, H., and Gleason, K., Trans. Elect. Dev. 33, 564 (1986).Google Scholar
9. Kern, R., Le Lay, G., and Metois, J. J., in Current Topics in Material Science, Vol. 3 ed. Kaldis, E (North Holland, Amsterdam) p. 131 (1979).Google Scholar
10. Venables, J. A., Spiller, G. D. T., and Hanbucken, M., Rep. Prog. Phys. 47, 399 (1984).Google Scholar
11. For a review, sec, Wortis, M., in Fundamental Problems in Statistical Mechanics Vol 6, ed., Cohen, E. G. D. (North Holland, Amsterdam) p. 87 (1985).Google Scholar
12. Singh, J. and Bajaj, K.K., J. Vac. Sci. Technol. B 2, 276 (1984).Google Scholar
13. Singh, J. and Bajaj, K.K., J. Vac. Sci. Technol. B 2, 576 (1984).Google Scholar
14. Singh, J. and Bajaj, K.K., J. Vac. Sci. Technol. B 3, 520 (1985).Google Scholar
15. Ghaisas, S. V. and Madhukar, A., Phys. Rev. Lett. 56, 1066 (1986).Google Scholar
16. Singh, J. and Bajaj, K. K., Superlattices Microstructures 2, 185 (1986).Google Scholar
17. Clarke, S. and Uvedensky, D. W., Appl. Phys. Lett. 51, 340 (1987).Google Scholar
18. Neave, J. H., Dobson, P. J., Joyce, B. A., and Zheng, J., Appl. Phy. Lett 47, 100 (1985).Google Scholar
19. Van Hove, J. M., Pukite, P. R., Whaley, G. J., Wowchak, A. M., and Cohen, P.I., J. Vac. Sci. Technol. B3, 1116 (1985).Google Scholar
20. Heckingbottom, R., Todd, C. J., and Davies, G. J., J. Electrochem, Soc. 127, 444 (1980).Google Scholar
21. Van Hove, J. M., Pukite, P. R., Cohen, P. I., and Lent, C. S., J. Vac. Sci. Technol. A1, 609 (1983).Google Scholar
22. Berger, P., Bhattacharya, P. K. and Singh, J., J. Appl. Phys. 61, 2856 (1987).Google Scholar
23. Frank, F. C. and Van der Merwe, J. H., Proc. Royal Soc. London Sec. A 198, 205 (1949); 198, 216 (1949).Google Scholar
24. Ball, C. A. B. and Van der Merwe, J. H., Dislocations in Solids 6, 121 (1983).Google Scholar
25. Matthews, J. W. and Blakeslee, A. E., J. Cryst. Growth 27, 118 (1974).Google Scholar
26. Jesser, W. A. and Van der Merwe, J. H., J. Appl. Phys. 63, 1928 (1988).Google Scholar
27. Dodson, B. W. and Taylor, P. A., Appl. Phys. Lett. 49, 1360 (1986).Google Scholar
28. Tsao, J. Y. and Dodson, B. W., Appl. Phys. Lett 53, 848 (1988).Google Scholar
29. Whaley, G. and Cohen, P., J. Vac Sci. Technol. B6, 625 (1988).Google Scholar
30. Berger, P. R., Chang, K., Bhattacharya, P., Singh, J. and Bajaj, K., Appl. Phys. Lett. 52, 684 (1988).Google Scholar
31. “Molecular Beam Epitaxial Growth and Characterization of Strained InGaAs/GaAs Heterostructures,” K. Chang, Ph.D. Thesis 1989, University of Michigan.Google Scholar