No CrossRef data available.
Published online by Cambridge University Press: 25 May 2012
We report a study of resistive switching in a silicon-based memristor/resistive RAM (RRAM) device in which the active layer is silicon-rich silica. The resistive switching phenomenon is an intrinsic property of the silicon-rich oxide layer and does not depend on the diffusion of metallic ions to form conductive paths. Both unipolar and bipolar programming is demonstrated.
Switching exhibits the pinched hysteresis I/V loop characteristic of RRAM/memristive systems, and on/off resistance ratios of 104:1 or higher can be easily achieved. Scanning Tunnelling Microscopy suggests that switchable conductive pathways are 10nm in diameter or smaller.