Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T10:00:33.121Z Has data issue: false hasContentIssue false

Investigation of Early Nucleation Events in Magnesium Oxide During Ion Beam Assisted Deposition

Published online by Cambridge University Press:  01 February 2011

James Groves
Affiliation:
jgroves@stanford.edu, Stanford University, Materials Science and Engineering, 94305, California, United States
Robert Hammond
Affiliation:
rhammond@stanford.edu, Stanford University, Geballe Laboratory for Advanced Materials, 94305, California, United States
Raymond F. DePaula
Affiliation:
rdepaula@lanl.gov, Los Alamos National Laboratory, Superconductivity Technology Center, 87545, New Mexico, United States
Bruce M. Clemens
Affiliation:
bmc@stanford.edu, Stanford University, Materials Science and Engineering, 94305, California, United States
Get access

Abstract

Ion beam assisted deposition (IBAD) is used to biaxially texture magnesium oxide (MgO), which is useful as a template for the heteroepitaxial growth of various thin film devices and most notably as a template layer for high temperature superconductors. Improvements in the quality of IBAD MgO films have been largely empirical and there is uncertainty as to the exact mechanism by which this biaxial texture is developed. Using a specially built quartz crystal microbalance (QCM) as both a substrate and monitor in conjunction with reflected high-energy electron diffraction (RHEED) acting on the same surface, we have probed the initial stages of IBAD MgO growth in-situ. We have correlated corresponding RHEED images with real-time mass accumulation QCM data during the film growth. During IBAD growth, the mass accumulation exhibits a sharp change in slope corresponding to a sudden decrease in growth rate. Corresponding RHEED images show an abrupt onset of crystallographic texture at this point. A simple model incorporating differential etch rates of the MgO film and silicon nitride substrate can be used to fit the data but is inconsistent with the behavior during ion etching with no growth. It is, therefore, postulated that a more complex mechanism is responsible for the observed behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yu, L. S., Harper, J. M. E., Cuomo, J. J. and Smith, D. A., Appl. Phys. Lett. 47 (9), 932 (1985).Google Scholar
2. Arendt, P. N. and Foltyn, S. R., MRS Bulletin 29 (8), 543 (2004).Google Scholar
3. Ensinger, W. and Kiuchi, M., Surf.Coat. Tech. 84 (1/3), 425 (1996).Google Scholar
4. Gerlach, J. W., Preckwinkel, U., Wengenmair, H., Kraus, T. and Rauschenbach, B., Appl. Phys. Lett. 68 (17), 23602362 (1996).Google Scholar
5. Iijima, Y., Tanabe, N., Kohno, O. and Ikeno, Y., Appl. Phys. Lett. 60 (6), 769771 (1992).Google Scholar
6. Reade, R. P., Berdahl, P., Russo, R. E. and Garrison, S. M., Appl. Phys. Lett. 61 (18), 22312233 (1992).Google Scholar
7. Wu, X. D., Foltyn, S. R., Arendt, P., Townsend, J., Adams, C., Campbell, I. H., Tiwari, P., Coulter, Y. and Peterson, D. E., Appl. Phys. Lett. 65 (15), 19611963 (1994).Google Scholar
8. Finnemore, D. K., Gray, K. E., Maley, M. P., Welch, D. O., Christen, D. K. and Kroeger, D. M., Physica C 320 (1–2), 18 (1999).Google Scholar
9. Wang, C. P., Do, K. B., Beasley, M. R., Geballe, T. H. and Hammond, R. H., Appl. Phys. Lett. 71 (20), 29552957 (1997).Google Scholar
10. Arendt, P. N., Foltyn, S. R., Groves, J. R., DePaula, R. F., Dowden, P. C., Roper, J. M. and Coulter, J. Y., Appl.Supercond. 4 (10–11), 429434 (1996).Google Scholar
11. Arendt, P. N., Foltyn, S. R., Civale, L., DePaula, R. F., Dowden, P. C., Groves, J. R., Holesinger, T. G., Jia, Q. X., Kreiskott, S., Stan, L., Usov, I., Wang, H. and Coulter, J. Y., Physica C 412/414P2, 795800 (2004).Google Scholar
12. Selvamanickam, V., Chen, Y., Xiong, X., Xie, Y., Zhang, X., Qiao, Y., Reeves, J., Rar, A., Schmidt, R. and Lenseth, K., Physica C 463–465, 482487 (2007).Google Scholar
13. Wang, C. P., Doctor of Philosophy, Stanford University, 1999.Google Scholar
14. Usov, I. O., Arendt, P. N., Groves, J. R., Stan, L. and DePaula, R. F., NIM B 243 (1), 87 (2006).Google Scholar
15. Brewer, R. T. and Atwater, H. A., Appl. Phys. Lett. 80 (18), 33883390 (2002).Google Scholar
16. Groves, J. R., DePaula, R. F., Stan, L., Hammond, R. H. and Clemens, B. C., IEEE Trans.Appl. Supercond., in press (2009).Google Scholar
17. Groves, J. R., Arendt, P. N., Foltyn, S. R., Jia, Q. X., Holesinger, T. G., Kung, H., Peterson, E. J., DePaula, R. F., Dowden, P. C., Stan, L. and Emmert, L. A., J.Mater. Res. 16 (8), 21752178 (2001).Google Scholar
18. Zepeda-Ruiz, L. A. and Srolovitz, D. J., JAP 91 (12), 1016910180 (2002).Google Scholar
19. Im, J. S. and Atwater, H. A., Appl. Phys. Lett. 57 (17), 17661768 (1990).Google Scholar
20. Winters, H. F., Coufal, H., Rettner, C. T. and Bethune, D. S., Phys. Rev. B 41 (10), 6240 (1990).Google Scholar
21. Kornelsen, E. V. and Sinha, M. K., JAP 39 (10), 45464555 (1968).Google Scholar