Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T14:05:01.344Z Has data issue: false hasContentIssue false

Investigation of Impurity Neutralization and Defect Passivation in Polycrystalline Silicon Solar Cells

Published online by Cambridge University Press:  22 February 2011

Lawrence L. Kazmerski*
Affiliation:
Solar Energy Research Institute, 1617 Cole Boulevard, Golden, CO 80401
Get access

Abstract

The passivation of grain boundaries and the neutralization of impurities in polycrystalline silicon, important processes for the improvement of performance of devices fabricated from this material, are discussed. The incorporation of hydrogen into grain boundaries is investigated using surface analysis methods. Volume-mapping techniques are used to identify the bonding mechanisms of the hydrogen in oxygen-free and oxygen-rich intergrain regions. Interactions between shallow acceptors (B, Al, Ga and In) and hydrogen in polycrystalline Si are studied. The bonding mechanisms involved in the acceptor neutralization process at the grain boundaries are evaluated using microanalytical techniques. Differences in the incorporation of molecular and atomic hydrogen, and corresponding variation in electrical passivation of grain boundaries, are observed. Volume-indexed AES and Auger difference spectroscopy data are complemented by scanning tunneling microscope images to confirm the direct hydrogen-silicon bonding in boron-doped grain boundaries.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sinton, R.A. and Swanson, R.M., Proc. 19th IEEE Photovoltaic Spec. Conf. (IEEE, New York:1987) pp.Google Scholar
2. Green, M.A., Wenham, S.R. and Blakers, A.W., Proc. 19th IEEE Photovoltaic Spec. Conf. (IEEE, New York: 1987) pp. 612. Also, A.W. Blakers and M.A. Green, Appl. Phys. Lett. 48, 215 (1986).Google Scholar
3. Seager, C.H., Sharp, D.J., Panitz, J.K.G. and Hanoka, J.I., J. Phys. C1 43, 103 (1982).Google Scholar
4. Ginley, D.S. and Haaland, D.M., Proc.18th IEEE Photovoltaic Spec. Conf. IEEE, New York; 1986) pp. 999–1002.Google Scholar
5. Dube, C. and Hanoka, J.I., Appl. Phys Lett. 45, 1135 (1984).Google Scholar
6. Martinuzzi, S., Sebbar, M.A. and Gervais, J., Appl. Phys. Lett. 47, 376 (1985); Also, S. Martinuzzi, H. El-Ghitani, L. Ammor, M. Pasquinelli,and H Poitevin, Proc. 19th IEEE Photovoltaic Spec. Conf. (IEEE, New York: 1987) pp. 1069–74.CrossRefGoogle Scholar
7. Spear, W.E. and LeComer, P.G., Solid-State Commun. 17, 1193 (1975).CrossRefGoogle Scholar
8. Dube, C., Hanoka, J.I. and Sandstrom, D.B., Appl. Phys. Lett. 44, 425 (1983).CrossRefGoogle Scholar
9. Redfield, D., Appl. Phys. Lett. 38, 174 (1981).Google Scholar
10. Hwang, W., Card, H.C. and Yang, E.S., Appl. Phys. Lett. 36, 315 (1980).Google Scholar
11. Fossum, J.G. and Lindholm, F.A., IEEE Trans. Electron Devices ED27, 692 (1980).CrossRefGoogle Scholar
12. Seager, C.H., Sharp, D.J., Panitz, J.K.G. and D'Aiello, R., J. Vac. Sci. Technol. 29, 430 (1982).CrossRefGoogle Scholar
13. Pankove, J.I., Carlson, D.E., Berdeyheiser, J.E. and Wance, R.O., Phys. Rev. Lett. 51, 2224 (1983).Google Scholar
14. Pankove, J.I., Wance, R.O. and Berdeyheiser, J.E., Appl Phys. Lett. 5, 1100 (1984).CrossRefGoogle Scholar
15. Pankove, J.I., Zanazucchi, P.J. and Magee, C.W.,Appl. Phys.Lett. 46, 787 (1985).CrossRefGoogle Scholar
16. Sah, C.T., Sun, J.Y.C. and Tzou, J.J., App. Phys. Lett. 43, 204 (1983).CrossRefGoogle Scholar
17. Sah, C.T., Sun, J.Y.C. and Tzou, J.J., appl. Phys. Lett. 55, 1525 (1984).Google Scholar
18. Pearton, S.J., Phys. Rev. Lett. 53, 855 (1984).CrossRefGoogle Scholar
19. Dadgar, S., Hsu, C.C-H., Pan, S.C-S. and Sah, C.T., J. Appl. Phys. 60, 1422 (1986).CrossRefGoogle Scholar
20. Johnson, N.M. and Moyer, M.D., Appl. Phys. Lett. 46, 787 (1985). Also, N.M. Johnson, Phys. Rev. B 31, 5525 (1985).CrossRefGoogle Scholar
21. Tavendale, A.J., Alexiev, D. and Williams, A.A., Appl. Phys. Lett. 44, 606 (1984).Google Scholar
22. Hansen, W.L., Pearton, S.J. and Haller, E.E., Appl. Phys. Lett. 44, 606 (1984).CrossRefGoogle Scholar
23. Kazmerski, L.L., Rev. Bras. de Apl. de Vacuo 5, 271 (1985).Google Scholar
24. Kazmerski, L.L., Proc. 18th IEEE Photovoltaic Spec. Conf. (IEEE, New York; 1986) pp. 72–86.Google Scholar
25. Kazmerski, L.L., J. Vac. Sci. Technol. A 4, 1570 (1986).Google Scholar
26. Seager, C.H., J. Appl. Phys. 52, 3960 (1981).CrossRefGoogle Scholar
27. Neugroschel, A. and Mazer, J.A., IEEE Trans. Electron Devices ED–29, 225 (1982).CrossRefGoogle Scholar
28. Leray, C., Bouree, J.E. and Rodot, M., J. Phys (Paris) C5, Suppl. 10, 235 (1983).Google Scholar
29. Oualid, J., Bonfils, M., Crest, J.P., Amzil, H., Zehaf, M. and Martinuzzi, S., Rev. Phys. Appl. 17, 119 (1982).CrossRefGoogle Scholar
30. Kazmerski, L.L., J. Vac. Sci. Technol. 20, 423 (1982).CrossRefGoogle Scholar
31. Kazmerski, L.L., J. Vac. Sci. Technol. A 3, 1287 (1985).CrossRefGoogle Scholar
32. Pantelides, S.T., Appl. Phys. Lett. 50, 995 (1987).CrossRefGoogle Scholar
33. Capizzi, M. and Mittiga, A., Appl. Phys. Lett. 50, 918 (1987).CrossRefGoogle Scholar
34. Kazmerski, L.L., Nelson, A.J., Dhere, R.G., Yahia, A. and Abou-Elfotouh, F., J. Vac. Sci. Technol. A (1988) in-press.Google Scholar
35. Burnham, N.A., Fisher, R.F., Asher, S.E. and Kazmerski, L.L., J.Vac. Sci.Technol. A 5, 2016 (1987).Google Scholar