No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Interaction between basal plane dislocations and single or well-spaced threading dislocations is discussed based on synchrotron white beam X-ray topographic studies carried out on physical vapor transport grown hexagonal silicon carbide single crystals. The basal plane dislocations are able to cut through single or well-spaced threading edge dislocations even if the formation of kinks/jogs is energetically unfavorable while threading screw dislocations were mostly observed to act as effective pinning points. However, basal plane dislocations can sometimes cut through a threading screw dislocation, forming a superjog and which subsequently migrates on the prismatic plane via a cross-slip process. Threading edge dislocation walls act as obstacles for the glide of basal plane dislocations and the mechanism by which this occurs is discussed. The character of low angle grain boundaries and their dislocation content are discussed.