Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T06:45:59.007Z Has data issue: false hasContentIssue false

Investigations of Low-Temperature Epitaxy, Ion Damage, and Reactive-Ion Cleaning Utilizing Ion Beam Deposition

Published online by Cambridge University Press:  28 February 2011

B. R. Appleton
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, Tennessee 37831
R. A. Zuhr
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, Tennessee 37831
T. S. Noggle
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, Tennessee 37831
N. Herbots
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, Tennessee 37831
S. J. Pennycook
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, Tennessee 37831
Get access

Abstract

The technique of ion beam deposition (IBD) is utilized to investigate low-energy, ion-induced damage on Si and Ge; to study reactive ion cleaning of Si and Ge; to fabricate amorphous isotopic heterostructures; and to fabricate and study the low-temperature epitaxial deposition of 74Ge on Ge(100), 30Si on Si(100), and 74Ge on Si(100). The techniques of ion scattering/channeling and cross-sectional TEM are combined to characterize the deposits.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Physics Through the 1990's, Condensed Matter Physics: Physics Survey, National Academy Press, Washington, D.C., 1986.Google Scholar
2. Aston, F. W., Philos. Mag. 38/39 (19191925).Google Scholar
3. Dempster, A. J., Phys. Rev. 11, 316 (1918); 18, 415 (1921); 20, 631 (1922).Google Scholar
4. Love, L. O., Science 182, 343 (1973).Google Scholar
5. Wolter, A. R., p. 2A-1 in Proceedings 4th Microelectron Symposium (St. Louis, 1965), IEEE, New York, 1965.Google Scholar
6. Probyn, B. A., J. Phys. D 1, 457 (1968).Google Scholar
7. Amano, J., Bryce, P., and Lawson, R.W.P., J. Vac. Sci. Technol. 13(2), 591 (1976).Google Scholar
8. Amano, J. and Lawson, R.W.P., J. Vac. Sci. Technol. 15(1), 118 (1978).CrossRefGoogle Scholar
9. Amano, J., Thin Solid Films 92, 115 (1982).Google Scholar
10. Yagi, K., Tamura, S., and Tokyama, T., Jpn. J. Appl. Phys. 16, 245 (1982).Google Scholar
11. Tsukizoe, T., Nakai, T., and Ohmae, N., J. Appl. Phys. 42, 4770 (1977).CrossRefGoogle Scholar
12. Tokuyama, T., Yagi, K., Miyake, K., Tamura, M., Natsuaki, N., and Tachi, S., Nucl. Instrum. Methods 182/183, 241 (1981).Google Scholar
13. Thomas, G. E., Beckers, L. J., Vrakking, J. J., and de Koning, B. R., J. Cryst. Growth 56, 557 (1982).CrossRefGoogle Scholar
14. Miyake, K. and Tokuyama, T., Thin Solid Films 92, 123 (1982).Google Scholar
15. Zalm, P. C. and Beckers, L. J., Appl. Phys. Lett. 41(2), 167 (1982).Google Scholar
16. Yamada, I., Inokawa, H., and Takage, T., Nucl. Instrum. Methods B 6, 439 (1985).Google Scholar
17. Herbots, N., Appleton, B. R., Noggle, T. S., Zuhr, R. A., and Pennycook, S. J., Nucl. Instrum. Methods B 13, 250 (1986).Google Scholar
18. Herbots, N., Pennycook, S. J., Appleton, B. R., Noggle, T. S., and Zuhr, R. A., Proceedings Symposium A, 1985 Fall MRS Meeting, Boston, Massachusetts, December 1–4, 1985.Google Scholar
19. Appleton, B. R., Pennycook, S. J., Zuhr, R. A., Herbots, N., and Noggle, T. S., Nucl. Instrum. Methods B, 1987 (in press).Google Scholar
20. Herbots, N., Appleton, B. R., Noggle, T. S., Pennycook, S. J., Zuhr, R. A., and Zehner, D. M., p. 335 in Semiconductor-Based Heterostructures, edited by Green, M. L., Baglin, J.E.E., Chin, G. Y., Deckman, H. W., Mayo, W., and Narashinham, D, The Metallurgical Society, 1986.Google Scholar
21. Hagstrum, H. D., Surf. Sci. 54, 197 (1976).Google Scholar
22. Itoh, T., Nakamura, T., Utomachi, M., and Sugiyama, T., Jpn. J. Appl. Phys. 16, 553 (1977).Google Scholar
23. Takagi, T., Yamada, I., and Sasaki, A., Thin Solid Films 45, 569 (1975).Google Scholar
24. Kuiper, A.E.T., Thomas, G. E., and Schanten, W. J., J. Cryst. Growth 51, 17 (1981).Google Scholar
25. Paine, B. M. and Averbach, R. S., Nucl. Instrum. Methods B 7/8, 666 (1985).Google Scholar
26. Appleton, B. R., p. 189 in Ion Implantation and Ion Beam Processing, edited by Williams, J. S. and Poate, J. M., Academic Press, New York, 1984.Google Scholar
27. Greene, J. E., Crit. Rev. Solid State and Mater. Sci. 11(1), 47 (1983); also see J. E. Greene, “Recent Results on the Role of Low-Energy Ion/Surface Interactions During Crystal Growth from the Vapor Phase,” these proceedings.Google Scholar
28. Bean, J. C., Science 230, 127 (1985) and references therein.Google Scholar
29. Lima, C. A. Ferreira and Howie, A., Philos. Mag. 34, 1057 (1976); L. G. Salisbury, J. Microsc. 118, 75 (1979).Google Scholar
30. Coburn, J. W., Winters, H. F., J. Appl. Phys. 50, 3189 (1979).Google Scholar
31. Winters, H. F., Coburn, J. W., J. Vac. Sci. Technol. 3, 1376 (1985).Google Scholar
32. Csepregi, L., Kennedy, E. F., Mayer, J. W., and Sigmon, T. W., J. Appl. Phys. 49, 3906 (1978).Google Scholar
33. Suni, I., Goltz, G., Nicolet, M. A., and Lau, S. S., Thin Solid Films 93, 171 (1982).Google Scholar
34. Jinno, K., Kinoshida, H., and Matsumato, Y., J. Electrochem. Soc. 125, 827 (1978).CrossRefGoogle Scholar
35. Magab, C. J. and Levinstein, H. F., J. Vac. Sci. Technol. 17, 721 (1980).Google Scholar
36. Lee, Y. H. and Chen, M. M., J. Vac. Sci. Technol. B 4, 468 (1986).Google Scholar
37. Beuk, J., Mannaerts, J. P., Ourmazo, A., Feldman, L. C., and Davidson, B. A., Appl. Phys. Lett. 49, 286 (1986).Google Scholar
38. Herbots, N., Appleton, B. R., Noggle, T. S., Zehner, D. M., and Zuhr, R. A., “Low-Temperature Growth of Thin SiO2 Films by Ion Beam Deposition (IBD),” these proceedings.Google Scholar