Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T05:51:01.018Z Has data issue: false hasContentIssue false

Investigations of Zipping Mechanism in Relativistic Heavy Ion Interactions With Carbon Onions

Published online by Cambridge University Press:  06 March 2012

RA Al-Duhaileb
Affiliation:
College of Engineering, Michigan State University, East Lansing, MI 48824, U.S.A
K Xie
Affiliation:
College of Engineering, Michigan State University, East Lansing, MI 48824, U.S.A
VM Ayres
Affiliation:
College of Engineering, Michigan State University, East Lansing, MI 48824, U.S.A
RM Ronningen
Affiliation:
National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824, U.S.A.
AF Zeller
Affiliation:
National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824, U.S.A.
T Baumann
Affiliation:
National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824, U.S.A.
A Hirata
Affiliation:
Graduate School of Mechanical Sciences, Tokyo Institute of Technology, Tokyo 152-8550, Japan
Get access

Abstract

The interactions of fully stripped Argon-40 heavy ion beams with 140 MeV/nucleon with a series of increasingly polygonal carbon onions are investigated by high-resolution transmission electron microscopy and thermogravimetric analysis. The experimentally observed graphene layer linking is compared with expected results from the displacement and dislocation migration models. The results suggest that dislocation-driven mechanisms may play a significant role in graphene layer linking induced by heavy ion interactions with carbon onions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wang, X., Li, Q., Xie, J., Jin, Z., Wang, J., Jiang, K., and Fan, S., Nano Lett. 9, 3137 (2009).Google Scholar
2. Hirata, A., Igarashi, M., and Kaito, T., Tribo. Inter. 37, 899 (2004).Google Scholar
3. Ya Gerasimov, G., JEPT 83, 849 (2010).Google Scholar
4. Banhart, F., Phil. Trans. R. Soc. Lond. A 362, 2205 (2004).Google Scholar
5. Krasheninnikov, A.V., Nordlund, K., NIMB 216, 355 (2004).Google Scholar
6. Terrones, H., Banhart, F., Charlier, J. C., and Ajayan, P. M., Science 288, 1226 (2000).Google Scholar
7. Peng, B., Locascia, M., Zapol, P., Li, S., Mielke, S. L., Schatz, G., and Espinosa, H. D., Nature Nanotech. 3626 (2008).Google Scholar
8. Akatyeva, E., Huang, J. Y., and Dumitrica, T., Phys. Rev. Lett. 105, 106102 (2010).Google Scholar
9. Ziegler, J. F., Biersack, J. P., and Ziegler, M. D., SRIM: The Stopping and Range of Ions in Matter, www.SRIM.org Google Scholar
10. Alduhaileb, R. A., Xie, K., Myers, J. C., Ayres, V. M., Jacobs, B. W., McElroy, K., Bieler, T. R., Crimp, M. A., Fan, X., Ronningen, R. M., Zeller, A. F., Baumann, T., and Hirata, A., in Advanced Materials for Applications in Extreme Environments, edited by Samaras, M., Fu, C. C., Byun, T. S., Stan, M., Ogawa, T., Motta, A., Simeone, D., Smith, R., Wang, L., Zhang, X., Kraft, O., Demkowicz, M., and Li, M., (Mater Res. Soc. Symp. Proc. 1298, Cambridge University Press, Cambridge, UK, 2011) 1298-T07-15 (6 pp).Google Scholar
11. Butenko, Yu. V., Krishnamurthy, S., Chakraborty, A. K., Kuznetsov, V. L., Dhanak, V. R., Hunt, M. R. C. and Siller, L., Phys. Rev. B 71, 075420 (2005).Google Scholar
12. Ahmad, S., J. Chem. Phys. 116, 3396 (2002).Google Scholar