Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T13:57:19.549Z Has data issue: false hasContentIssue false

Investigations on in situ Nanocrystallization and Magnetic Properties for Amorphous Fe78Si9B13 Ribbons

Published online by Cambridge University Press:  10 February 2011

Xiangcheng Sun
Affiliation:
Instituto Nacional de Investigaciones Nucleares (ININ), Km.36.5, Carr. Mexico-Toluca, C.P.52045 Ocoyoacac, Edo. de Mexico, Mexico
A. Cabral-Prieto
Affiliation:
Instituto Nacional de Investigaciones Nucleares (ININ), Km.36.5, Carr. Mexico-Toluca, C.P.52045 Ocoyoacac, Edo. de Mexico, Mexico
M. Jose Yacaman
Affiliation:
Instituto de Fisica, National University of Mexico, Mexico D.F. Mexico
Wensheng Sun
Affiliation:
State Key Lab for RSA, Institute of Metal Research, Chinese Academy of Science, Shenyang, 110015, P. R. China
Get access

Abstract

The amorphous state of ferromagnetic Fe78Si9B13 (Metglas 2605S-2) and itsnanocrystallization were investigated by in situ transmission electron microscope (TEM), Xraydiffraction (XRD), Mossbauer spectroscopy (MS), differential scanning calorimeters(DSC) and magnetic moment measurements. The Mössbauer spectrum exhibited anessentially symmetric hyperfine field pattern of 259KOe in as-quenched amorphous state atroom temperature. The Curie and crystallization temperature were determined to beTc=708K and Tx.= 803K, respectively. The Tx value was in good agreement with DSCmeasurement results. The occupied fraction of the nanocrystalline phases of α-Fe(Si) andFe2 at in situ optimum annealing temperature was about 57% and 43%, respectively. It isnotable that the magnetization of the amorphous phase decreases more rapidly withincreasing temperature than those of nanocrystalline ferromagnetism, suggesting thepresence of the distribution of exchange interaction in the amorphous phase or highmetalloid contents.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rawers, J.C., McCune, R. A. and Adams, A., J. Mater. Sci. Lett., 7, 958 (1988)Google Scholar
2. Bang, J.Y. and Lee, R.Y., J. Mater. Sci., 26, 4961 (1991); C.F.Chang and J. Marti J. Mater. Sci., 18, 2297, 1983.Google Scholar
3. Yoshizawa, Y., oguma, S. and Yamauchi, K. J. Appl. Phys., 64(10), 6044(1988)Google Scholar
4. Lu, K., Wang, J.T., and Wei, W.D., J. Appl. Phys., 69, 522(1991)Google Scholar
5. Tong, H.Y., Wang, J.T., Jiang, H.G. and Lu, K. J. Non-Cryst. Solids 150, 444(1992)Google Scholar
6. Liu, X.D., Lu, K., and Hu, Z.Q Mater. Sci. Eng. A179/180, 386(1994)Google Scholar
7. Suzuki, K., Kikuchi, M., Makino, A., Inoue, A. and Masumoto, T., Mater. Trans. Jpn. Inst. Met., 32, 961(1991)Google Scholar
8. nakabayashi, H., Doi, M., Matsui, M., and Doyama, M. Mat. Res. Soc. Symp. Proc. 286, 227 (1993)Google Scholar
9. Kim, C.S., Kim, S. B., Lee, J.S. and Noh, T.H. J. Appl. Phys. 79(8) 5459 (1996)Google Scholar
10. Sterns, M.B. Phys. Rev., 129, 1136 (1963)Google Scholar
11. Tebble, R.S. and Craik, D.J., Magnetic Materials (Wiley-Interscience, NewYork, 1969), P. 51 Google Scholar