Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T07:02:51.564Z Has data issue: false hasContentIssue false

Ion Bombarment Effect on the Growth of Microcrystalline Germanium

Published online by Cambridge University Press:  28 February 2011

B. Drevillon
Affiliation:
Equipe Synthnse de Couches Minces pour l'Energétique (ER 258), Laboratoire de Physique Nucléaire des Hautes Energies, Ecole Polytechnique, 91128 Palaiseau (France)
C. Godet
Affiliation:
also at: Laboratoire de Physico-Chimie des Rayonnements (UA 75), Université Paris-Sud, 91405 Orsay (France)
A. M. Antoine
Affiliation:
Equipe Synthnse de Couches Minces pour l'Energétique (ER 258), Laboratoire de Physique Nucléaire des Hautes Energies, Ecole Polytechnique, 91128 Palaiseau (France)
Get access

Abstract

The influence of surface mobility on the growth of Ge films is studied as a function of preparation conditions. The positive ion bombardment during film deposition on chromium substrates is analyzed using an electrostatic analyzer. The dielectric functions of the films are measured over the range 1.7–4.5 eV using in-situ spectroscopic phase modulated ellipsometry (SPME). The spectra of microcrystalline germanium (μc-Ge) present a shoulder near 4.2 eV which corresponds to the E2. optical transition observed in single crystal germanium. For substrate temperatures greater than 150°C, a transition from a-Ge:H to μc-Ge appears when the ion kinetic energy exceeds a threshold energy Eth, around 120 eV. Eth decreases as a function of substrate temperature. The Eth value is found to be higher than the threshold value corresponding to the opposite transition, giving evidence of a substrate memory effect on the growth of μc-Ge. Kinetic ellipsometry measurements of the early stage of the μc-Ge deposition on chromium are accurately, modelled by microcrystalline nucleation at a 50 Å level. After 200 Å thickness, μc-Ge grows with an overlayer. The description of μc-Ge as a mixture of c-Ge, a-Ge:H and voids is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Antoine, A.M., Drévillon, B. and Cabarrocas, P. Roca i, J. of Non Crystal. Solids 77–78 769 (1985).Google Scholar
[2] Mishima, Y., Miyazaki, S., Hirose, M. and Osaka, Y., Phil. Mag B 46, 1 (1982).Google Scholar
[3] Godet, C., Marchon, B., and Schmidt, M.P. (to be published).Google Scholar
[4] Bagley, B.G., Aspnes, D.E., Adams, A.C. and Mogab, C.J., Appl. Phys. Lett. 38, 56 (1981).CrossRefGoogle Scholar
[5] Collins, R.W., Windischmann, H., Cavese, J.M., and Hernandez, J. Gonzalez, J. Appl. Phys. 58, 2, 954 (1985).Google Scholar
[6] Kumar, Satyendra, Drévillon, B. and Godet, C., J. Appl. Phys. 60, 1542 (1986).Google Scholar
[7] Aspnes, D.E., Bouldin, C.E., and Stern, E.A., Proc. 17th ICPS, Springer Verlag, 841 (1984).Google Scholar
[8] Drévillon, B., Perrin, J., Marbot, R., Violet, A. and Dalby, J.L., Rev. Sci. Instrum. 53, 969 (1982).Google Scholar
[9] Antoine, A.M., Drévillon, B., P. Roca i Cabarrocas (to appear in J. Appl. Phys.).Google Scholar
[10] Drévillon, B., Thin Solid Films 130, 165 (1985).Google Scholar
[11] Collins, R.W., Appl. Phys. Lett. 48, 13, 843 (1986).Google Scholar
[12] Aspnes, D.E. and Studna, A.A., Phys. Rev. B. 27, 985 (1983).Google Scholar
[13] Veprek, S., Iqbal, Z., Oswald, H.R., Sarrott, F.A. and Wagner, J.J., J. Phys. (Paris), C4–251 (1981).Google Scholar
[14] Cotton, F.A. and Wilkinson, G., Advanced Inorganic Chemistry 3rd edition John Wiley, New-York (1972).Google Scholar
[15] Paul, W., Paul, D.K., Roedern, B.V., Blake, J. and Oguz, S., Phys. Rev. Lett. 46, 1016 (1981).Google Scholar