Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T14:17:54.007Z Has data issue: false hasContentIssue false

Ion Induced Crystallization and Growth of Nanoscale Grains in Ceramics

Published online by Cambridge University Press:  25 February 2011

A. R. Pannikkat
Affiliation:
Cornell University, Dept. of Materials Science & Engineering, Ithaca, N.Y. 14853
P. Børgesen
Affiliation:
Cornell University, Dept. of Materials Science & Engineering, Ithaca, N.Y. 14853
D. A. Lilienfeld
Affiliation:
Cornell University, National Nanofabrication Facility, Ithaca, N.Y. 14853
R. Lappalainen
Affiliation:
Cornell University, Dept. of Materials Science & Engineering, Ithaca, N.Y. 14853
H. Msaad
Affiliation:
Cornell University, Dept. of Materials Science & Engineering, Ithaca, N.Y. 14853
R. Raj
Affiliation:
Cornell University, Dept. of Materials Science & Engineering, Ithaca, N.Y. 14853
Get access

Abstract

Self supporting thin films of amorphous alumina and zirconia were irradiated with light and heavy ions at various temperatures(25–430°C). Irradiation was found to result in the formation of 10–30 nm large grains well below conventional crystallization temperatures. These grains were quite stable against subsequent thermal growth. Crystallization, grain size, and growth depended on ion species as well as on ‘stabilizing’ additives (yttria or Pt).

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]: Birringer, R., Mat.Sci. & Engg., A 117 (1989) 3343.Google Scholar
[2]: Burggraaf, A. J., Keizer, K., and van Hassel, B. A., Solid State Ionics 32 /33 (1989) 771.Google Scholar
[3]: Birringer, R., Hahn, H., Hofler, H., Karch, J., Gleiter, H., Defect & Diffusion Forum, 59 (1988) 1732.Google Scholar
[4]: Lappalainen, R., Pannikkat, A.R., Raj, R., Unpublished results.Google Scholar
[5]: Lilienfeld, D. A., Hung, L. S., and Mayer, J. W., MRS Bulletin 12(2) (1987) 31 Google Scholar
[6]: Brimhall, J. L., Nucl. Instrum. Meth. B7 /8 (1985) 26.Google Scholar
[7]: White, C.W., Mchargue, C.J., Sklad, P.S., Boatner, L.A., Farlow, G.C., Mater. Sci. Rep., 4 (1989) 41146.Google Scholar
[8]: White, C. W., Sklad, P.S., Boatner, L.A., et al. (Mater. Res. Soc. Symp. Proc. 60, Pittsburgh, PA 1986) 337.Google Scholar
[9]: Zhou, W., Cao, D. X., and Sood, D. K., in “Beam Solid Interactions: Physical Phenomena”, edited by Knapp, J. A., Børgesen, P., and Zuhr, R. A. (Mater. Res. Soc. Symp. Proc. 157, Pittsburgh, PA 1990) 543.Google Scholar
[10]: Pannikkat, A. R., Børgesen, P., Lilienfeld, D. A., Msaad, H. and Raj, R., to be published.Google Scholar
[11]: Kelly, R., Naguib, H.M., in Atomic Collisions in Solids, edited by Palmer, D.W., Thompson, M.W., Townsend, P.D. (Elsevier Publishing Inc. New York, 1970 ), p. 172.Google Scholar
[12]. Wang, J., Raj, R., unpublished results.Google Scholar
[13]: White, C.W., Boatner, L.A., Sklaad, P.S., McHargue, C.J., Holland, O.W., Abraham, M.M., Appleton, B.R., J. Appl. Phys., 54 (1984) 683.Google Scholar
[14]: Naguib, H.M., Kelly, R., Radiation effects, 25 (1975) 112.Google Scholar
[15]: Farlow, G. C., Sklad, P. S., White, C. W., McHargue, C. J., and Appleton, B. R., in “Defect Properties and Processing of High Technology Nonmetallic Materials”, edited by Chen, Y., Kingerly, W. D., and Stokes, R. J. (Mater. Res. Soc. Symp. Proc. 60 Pittsburgh, PA 1986) 387.Google Scholar
[16]: McHargue, C. J., Sklad, P. S., Angelini, P., White, C. W., and McCallum, J. C., in “Beam Solid Interactions: Physical Phenomena”, edited by Knapp, J. A., Børgesen, P., and Zuhr, R. A. (Mater. Res. Soc. Symp. Proc. 157, Pittsburgh, PA 1990) 505.Google Scholar
[17]: Matzke, Hj. and Whitton, J. L., Can. J. Phys. 44, 995 (1966).Google Scholar