Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T22:55:59.006Z Has data issue: false hasContentIssue false

Ion-beam Texturing at Nucleation – Manipulation of Crystallographic Orientation in Cubic Materials at the Nanometer Scale

Published online by Cambridge University Press:  31 January 2011

James Groves
Affiliation:
jgroves@stanford.edu, Stanford University, Materials Science and Engineering, 94305, California, United States
Robert Hammond
Affiliation:
rhammond@stanford.edu, Stanford University, GLAM, Stanford, California, United States
Ann Marshall
Affiliation:
afm@stanford.edu, Stanford University, GLAM, Stanford, California, United States
Raymond F DePaula
Affiliation:
rdepaula@lanl.gov, Los Alamos National Laboratory, Superconductivity Technology Center, 87545, New Mexico, United States
Liliana Stan
Affiliation:
lilianas@lanl.gov, Los Alamos National Laboratory, Superconductivity Technology Center, 87545, New Mexico, United States
Bruce M Clemens
Affiliation:
bmc@stanford.edu, Stanford University, Materials Science and Engineering, 94305, California, United States
Get access

Abstract

The use of an ion beam assist during the concurrent deposition of cubic materials can result in the growth of crystallographically oriented thin films. A model system, magnesium oxide (MgO), has been successfully used as a biaxially textured template film and develops texture in a different manner from that of other well-studied materials, like yttria-stablized zirconia. Here, we present data on the initial nucleation of biaxial texture in this model system using a novel in-situ quartz crystal microbalance (QCM) substrate combined with in-situ reflected high-energy electron diffraction (RHEED). Temporal correlation of mass uptake with the RHEED images of the growing surface can be used to elucidate the mechanism of texture development in these films. Experimental data shows that the initially polycrystalline MgO film develops biaxial crystallographic texture at a thickness of ˜2 nm, regardless of the ion-to-molecule ratio. RHEED images show the onset of texture occurs quickly and is somewhat analogous to a solid phase re-crystallization process with crystallite sizes of ˜3 to 4 nm. Imaging with transmission electron microscopy has corroborated these observations. Changes in the ion-to-molecule ratio can influence the crystallite size and affect the nucleation density of these films. Growth of these films on various substrates changes the sticking coefficient of the MgO and influences the nucleation density and film growth mode as well. This opens the possibility of using MgO and other materials to develop biaxially textured crystallites with a narrow, specified size distribution for nanoscale applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Ensinger, W. Surface and Coatings Technology 99 (1-2), 113 (1998).Google Scholar
2 Ensinger, W. Surface and Coatings Technology 80 (1/2), 35 (1996).Google Scholar
3 Hubler, R. Schroer, A. Ensinger, W. Wolf, G. K. Schreiner, W. H. and Baumvol, I. J. R. Surface and Coatings Technology 60 (1/3), 561 (1993).Google Scholar
4 Yu, L. S. Harper, J. M. E. Cuomo, J. J. and Smith, D. A. Appl. Phys. Lett. 47 (9), 932 (1985).Google Scholar
5 Iijima, Y. Tanabe, N. Kohno, O. and Ikeno, Y. Appl. Phys. Lett. 60 (6), 769771 (1992).Google Scholar
6 Arendt, P. N. and Foltyn, S. R. MRS Bulletin 29 (8), 543 (2004).Google Scholar
7 Wang, C. P. Do, K. B. Beasley, M. R. Geballe, T. H. and Hammond, R. H. Appl. Phys. Lett. 71 (20), 29552957 (1997).Google Scholar
8 Selvamanickam, V. Chen, Y. Xiong, X. Xie, Y. Zhang, X. Qiao, Y. Reeves, J. Rar, A. Schmidt, R. and Lenseth, K., Physica C: Superconductivity 463-465, 482487 (2007).Google Scholar
9 Bradley, R. M. Harper, J. M. E. and Smith, D. A. Journal of Applied Physics 60 (12), 4160 (1986).Google Scholar
10 Huhne, R. Fahler, S. Holzapfel, B. Oertel, C. G. Schultz, L. and Skrotzki, W. Physica C 372/376 (SUPPL. 2), 825 (2002).Google Scholar
11 Dzick, J. Hoffmann, J. Sievers, S. Kautschor, L. O. and Freyhardt, H. C. Physica C: Superconductivity 372-376 (Part 2), 723728 (2002).Google Scholar
12 Wang, C. P. Doctor of Philosophy, Stanford University, 1999.Google Scholar
13 Usov, I. O. Arendt, P. N. Groves, J. R. Stan, L. and DePaula, R. F. Nuclear Instruments & Methods in Physics Research, Section B (Beam Interactions with Materials and Atoms) 243 (1), 87 (2006).Google Scholar
14 Brewer, R. T. and Atwater, H. A. Appl. Phys. Lett. 80 (18), 33883390 (2002).Google Scholar
15 Groves, J. R. Hammond, R. H. DePaula, R. F. and Clemens, B. C. presented at the Fall 2008 MRS Meeting, Boston, MA, 2008 (in press).Google Scholar
16 Groves, J. R. DePaula, R. F. Stan, L. Hammond, R. H. and Clemens, B. C. IEEE Trans. Appl. Supercond., in press (2009).Google Scholar
17 Zepeda-Ruiz, L. A. and Srolovitz, D. J. Journal of Applied Physics 91 (12), 1016910180 (2002).Google Scholar
18 Hartman, J. W. Brewer, R. T. and Atwater, H. A. Journal of Applied Physics 92 (9), 51335139 (2002).Google Scholar
19 Arendt, P. N. High Temperature Superconductivity Program Peer Review, Washington, D.C. (2002).Google Scholar