Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T14:06:43.503Z Has data issue: false hasContentIssue false

Ion-Beam-Hydrogenated Amorphous Silicon

Published online by Cambridge University Press:  26 February 2011

Y. S. Tsuo
Affiliation:
Solar Energy Research Institute, Golden, Colorado 80401
X. J. Deng
Affiliation:
Solar Energy Research Institute, Golden, Colorado 80401
Y. Xu
Affiliation:
Solar Energy Research Institute, Golden, Colorado 80401
A. K. Barua
Affiliation:
Indian Association for the Cultivation of Science, Calcutta, India 700032
S. Asher
Affiliation:
Solar Energy Research Institute, Golden, Colorado 80401
S. K. Deb
Affiliation:
Solar Energy Research Institute, Golden, Colorado 80401
Get access

Abstract

A Kaufman ion-beam source has been used to study the rehydrogenation and postdeposition hydrogenation of amorphous silicon. In the rehydrogenation study, hydrogen atoms were implanted into glow-discharge-deposited amorphous silicon materials in which the hydrogen content had been driven out by heating. In the posthydrogenation study, amorphous silicon samples with no hydrogen content detectable by infrared absorption and no photoconductivity were used as the starting material. These materials were deposited by thermal CVD, magnetron sputtering, or RF glow discharge.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. See, for example, the review “Plasma deposition of Hydrogenated Amorphous Silicon Films,” by Luft, W. and Tsuo, Y. S., Applied Physics Communications 8, 1 (1988).Google Scholar
2. Chik, K. P., Lim, P. K., Tong, B. Y., John, P.K., Gogna, P. K., and Wong, S. K., Phys. Rev. B 27, 3562 (1983).Google Scholar
3. Nakashita, T., Hirose, M., and Osaka, Y., Japan. J. Appl. Phys. 23, 146 (1984).Google Scholar
4. Thomas, P. A. and Flachet, J. C., Phil. Mag. B 51, 55 (1985).CrossRefGoogle Scholar
5. Tsuo, Y. S., Smith, E. B., and Deb, S. K., Appi. Phys. Lett. 51, 1436 (1987).Google Scholar
6. Ohagi, H., Yamazaki, M., Nakata, J., Shirafuji, J., Fujibayashi, K., and Inuishi, Y., Technical Digest of the Int'l. Photovoltaics Science and Engineering Conf., Tokyo, Japan, 1987, pp. 671674.Google Scholar
7. Staebler, D. L. and Wronski, C. R., J. Appl. Phys. 51, 3262 (1980).Google Scholar
8. See, for example, the literature review and references in the paper by Tsuo, Y. S., Smith, E. B., Deng, X. J., Xu, Y., and Deb, S. K., to be published in Solar Cells.Google Scholar
9. Widner, A. E., Fehlmann, R., and Magee, C. W., J. Non-Cryst. Solids 54, 199 (1983).CrossRefGoogle Scholar
10. Pankove, J. I., Appl. Phys. Lett. 32, 812 (1978).Google Scholar
11. Seager, C. H., Sharp, D. J., Panitz, J. K. G., and D'iello, R. V., J. Vac. Sci. Tech. 20, 430 (1982).Google Scholar
12. Tsuo, Y. S. and Milstein, J. B., J. Appl. Phys. 57, 5523 (1985).CrossRefGoogle Scholar
13. Batabyal, A. K., Chaudhuri, P., Ray, S., and Baura, A. K., Thin Solid Films 112, 51 (1984).Google Scholar
14. Banerjee, R., Das, D., Batabyal, A. K., and Barua, A. K., Tech. Dig. Int'l. PVSEC-3, Tokyo, Japan, 1987, pp. 317318.Google Scholar