Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T14:03:20.364Z Has data issue: false hasContentIssue false

Ion-Beam-Induced Modifications of Thin Films: Growth Simulations

Published online by Cambridge University Press:  25 February 2011

Karl-Heinz Müller*
Affiliation:
CSIRO Division of Applied Physics, Sydney, Australia 2070
Get access

Abstract

If the thermal adatom mobility is limited during film growth, the kinetic energy delivered to the film surface by arriving species is the key parameter which determines the resulting film microstructure and properties. Kinetic models and growth simulations of nonequilibrium film growth have been used to study the influence of incident kinetic energy of adatoms and energetic ions on the film microstructure, microporosity, density, stoichiometry and epitaxy. Deposition processes like vapor, sputter, ion-assisted and ionized cluster beam deposition, could be examined in detail with particular emphasis on optical coatings. The theoretical descriptions used are based on the solid-gas, thermal spike, collision cascade and molecular dynamics model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Henderson, D. J., Brodsky, M.H., and Chaudhari, P., Appl. Phys. Lett. 25, 641 (1974).Google Scholar
2. Dirks, A.G. and Leamy, H.J., Thin Solid Films 47, 219 (1977).Google Scholar
3. Leamy, H.J., Gilmer, G.H. and Dirks, A.G. in Current Topics in Materials Science, Vol.6, edited by Kaldis, E. (North Holland Publ., Amsterdam, 1980), p. 309.Google Scholar
4. Müller, K.-H., J. Appl. Phys. 58, 2573 (1985).Google Scholar
5. Outlaw, R.A. and Heinbockel, J.H., Thin Solid Films 108, 79 (1983).Google Scholar
6. Movchan, B.A. and Demchishin, A.V., Fiz. Met. Metalloved. 28, 653 (1969).Google Scholar
7. Martin, P.J., Macleod, H.A., Netterfield, R.P., Pacey, C.G., and Sainty, W.G., Appl. Opt. 22. 178 (1983).Google Scholar
8. Martin, P.J., Netterfield, R.P., and Sainty, W.G., J. Appl. Phys. 55, 235 (1984).Google Scholar
9. Harper, J.M.E.. Cuomo, J.J., Gambino, R.J., and Kaufman, H.R. in: Ion Bombardment Modification of Surfaces: Fundamentals and Applications, edited by Auciello, O. and Kelly, R. (Elsevier, Amsterdam, 1984), p. 127.Google Scholar
10. Müller, K.-H., J. Vac. Sci. Technol. A4, 184 (1996).Google Scholar
11. Sigmund, P. and Claussen, C., J. Appl. Phys. 52, 990 (1981).Google Scholar
12. Biersack, J.P. and Haggmark, L.G., Nucl. Instrum. Methods 174, 257 (1980).Google Scholar
13. Müller, K.-H., J. Appl. Phys. 59, 2803 (1986).Google Scholar
14. Müller, K.-H., Appl. Phys. A40, 209 (1986).Google Scholar
15. Netterfield, R.P., Sainty, W.G., Martin, P.J., and Sie, S.H., Appl. Opt. 24, 2267 (1985).Google Scholar
16. Müller, K.-H., Netterfield, R.P., and Martin, P.J., Phys. Rev. B35, 2934 (1987).Google Scholar
17. Müller, K.-H., Phys. Rev. B (in press).Google Scholar
18. Müller, K.-H., Surface Science (in press).Google Scholar
19. Müller, K.-H., J. Appl. Phys. (in press).Google Scholar
20. Kuiper, A.E.T., Thomas, G.E.. and Schouten, W.J., J. Crystal Growth, 51, 17 (1981).Google Scholar
21. Yamada, I., Inokawa, H., and Takagi, T., Thin Solid Films 124, 179 (1985).Google Scholar
22. Takagi, T. and Yamada, I., Appl. Opt. 24, 879 (1985).Google Scholar
23. Takagi, T., Vacuum 36, 27 (1986).Google Scholar