Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-01T11:05:08.249Z Has data issue: false hasContentIssue false

Ionizing Radiation Total Dose Detectors Using Oligomer Organic Semiconductor Material and Devices

Published online by Cambridge University Press:  17 June 2011

Harshil N. Raval
Affiliation:
Centre of Excellence in Nanoelectronics, Department of Electrical Engineering, Indian Institute of Technology, Bombay, Mumbai – 400 076, India
V. Ramgopal Rao
Affiliation:
Centre of Excellence in Nanoelectronics, Department of Electrical Engineering, Indian Institute of Technology, Bombay, Mumbai – 400 076, India
Get access

Abstract

Organic semiconducting oligomer – Pentacene, as a material and organic electronic devices based on it, are proposed here as total dose detectors for ionizing radiation. Pentacene, when exposed to ionizing radiation of γ – rays using Cobalt – 60 (60Co) radiation source, shows increase in the conductivity of the material which can be used as a sensing phenomenon for determining the dose of ionizing radiation. The change in material property was also verified using UV-visible (UV-VIS) spectrum for pentacene thin-films with rising absorption peaks at the oxidized positions in the wavelength. A pentacene resistor can be used as a detector, as the change in the conductivity of the pentacene film can be easily quantified by measuring the change in resistance of the pentacene resistor after different total radiation dose exposures. The experiments resulted in a sensitivity of 340 kΩ/Gy for a total 100 Gy radiation dose for the pentacene resistor. Furthermore, employing this simple electrical measurement technique for determining the dose of ionizing radiation and to improve the sensitivity of the sensor by transistor action, a pentacene based organic field effect transistor (OFET) was exposed to ionizing radiation. Change in OFF current (IOFF) of the OFET sensor with W/L = 19350 μm/100 μm, suggests a sensitivity of 21 nA/Gy for 100 Gy dose. Also, changes in various other parameters like threshold voltage, subthreshold swing, field effect mobility, number of interface states etc. can be extracted from the electrical characterizations which prove their usefulness as a detector for ionizing radiation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dimitrakopoulos, C. D., Malenfant, P. R. L., Adv. Mater. 14 (2), 99 (2002)Google Scholar
2. Tsukagoshi, Kazuhito, Tanabe, Jun, yagi, Iwao, Shigeto, Kunji, Yanagisawa, Keiichi, aoyagi, Yoshinobu, J. Appl. Phys. 99, 064506 (2006)Google Scholar
3. Raval, H. N., Tiwari, S. P., Navan, R. R., Mhaisalkar, Subodh G., Rao, V. R., IEEE Elect. Dev. Lett. 30 (5), 484486 (2009)Google Scholar
4. Guillaud, G., Simon, J., Germain, J. P., Coord. Chem. Rev. 178 (2), 1433 (1998)Google Scholar
5. Dudhe, R. S., Sinha, J., Kumar, A., Rao, V. R., Sens. and Actu. B: Chem. 148 (1), 158 (2010)Google Scholar
6. Agostinelli, T., Campoy-Quiles, M., Blakesley, J. C., Speller, R., Bradley, D. D. C., nelson, J., Appl. Phys. Lett. 93 (20), 0203305 (2008)Google Scholar
7. Kingsley, J. W., Weston, S. J., Lidzey, D. G., Ieee Journal of selected topics in quantum electronics, PP (99), 1-6 (2010)Google Scholar
8. Silva, E. A. B., Borin, J. F., Nicolucci, P., Graeff, C. F. O., Netto, T. G., Bianchi, R. F., Appl. Phys. Lett. 86 (13), 131902 (2005)Google Scholar
9. Raval, H. N., Tiwari, S. P., Navan, R. R., Rao, V. R., Appl. Phys. Lett. 94 (12), 123304 (2009)Google Scholar
10. Lobez, J. M., and Swager, T. M., Chem. Int. Ed. 49 (1), 9598 (2010)Google Scholar
11. Raval, H. N. and Rao, V. R., IEEE Elect. Dev. Lett. 31 (12), 14821484 (2010)Google Scholar
12. Baude, P. F., Ender, D. A., Haos, M. A., Kelley, T. W., Muyres, D. V., Theiss, S. D., Appl. Phys. Lett. 82 (22), 39643966 (2003)Google Scholar
13. Eder, F., Klauk, H., Halik, M., Zschieschang, U., Schmid, G., Dehm, C., Appl. Phys. Lett. 84 (14), 26732675 (2004)Google Scholar
14. Crone, B., Dodabalapur, A., Gelperin, A., Torsi, L., Katz, H. E., Lovinger, A. J., Bao, Z., Appl. Phys. Lett. 78 (15), 22292231 (2001)Google Scholar
15. Zhu, T., Mason, J. T., Dieckermann, R., Malliaras, G. G., Appl. Phys. Lett. 81 (24), 4643 (2002)Google Scholar
16. Bartic, C., Palan, B., Campitelli, A., Borghs, G., Sens. and Actu. B: Chemical, 83, 115 (2002)Google Scholar
17. Kagan, C. R., Afzali, A., Graham, T. O., Appl. Phys. Lett. 86, 193504 (2005)Google Scholar
18. Lee, Ho Nyeon, Lee, Young Gu, Ko, Ik Hwan, Hwang, Eok Chai, Kang, Sung Kee, Current Applied Physics 8, 626630 (2008)Google Scholar
19. Tiwari, S. P., Srinivas, P., Shriram, S., Kale, N. S., Mnaisalkar, S. G., and Rao, V. R., Thin Solid Films, 516 (5), 770772 (2008)Google Scholar
20. Minakata, Takashi, Nagoya, Ichiro, Ozaka, Masaru, J. Appl. Phys. 69 (10), 73547356 (1991)Google Scholar
21. Tao, Chun-Lan, Zhang, Xu-Hui, Zhang, Fu-Jia, Liu, Yi-Yang, Zhang, Hao-Li, Materials Science and Engineering B 140, 14 (2007)Google Scholar
22. van Langevelde, R., Klaassen, F. M., IEEE Tran. On Elect. Dev. 44 (11), 20442052 (1997)Google Scholar