Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-01T03:45:42.031Z Has data issue: false hasContentIssue false

Iron Redox Reactions in Model Nuclear Waste Glasses and Melts

Published online by Cambridge University Press:  01 February 2011

Benjamin Cochain
Affiliation:
cochain@ipgp.jussieu.fr, CEA, DEN, DTCD, SECM, LDMC, Bagnols-sur-Cèze, France
Daniel R. Neuville
Affiliation:
&@ipgp.jussieu.fr, CNRS-IPGP, Physique des Minéraux et des Magmas, Paris, France
Jacques Roux
Affiliation:
2@ipgp.jussieu.fr, CNRS-IPGP, Physique des Minéraux et des Magmas, Paris, France
Dominique De Ligny
Affiliation:
3@ipgp.jussieu.fr, LPCML, UCBL, Lyon, France
Denis Testemale
Affiliation:
4@ipgp.jussieu.fr, Institut Néel, MCMF, Grenoble, France
Olivier Pinet
Affiliation:
pinet@ipgp.jussieu.fr, CEA, DEN, DTCD, SECM, LDMC, Bagnols-sur-Cèze, France
Pascal Richet
Affiliation:
prich@ipgp.jussieu.fr, CNRS-IPGP, Physique des Minéraux et des Magmas, Paris, France
Get access

Abstract

The influence of boron on the kinetics of oxidation of iron in silicate melts relevant to nuclear waste storage has been investigated by XANES experiments. The measurements have been performed isothermally as a function of time at the iron K-edge. The redox kinetics become slower with increasing B2O3 content either close to the glass transition range, where the redox kinetics are controlled by diffusion of network-modifying cations, or at superliquidus temperatures where oxygen diffusion is the rate-limiting factor. In both ranges the kinetics can be interpreted in terms of boron speciation and interaction with alkali cations. Below the liquidus, however, the long times needed to reach redox equilibrium allow sintering of the powders investigated to take place so that the resulting changes in sample geometry prevent determinations of oxidation kinetic parameters from being made.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mysen, B.O., Richet, P., 2005. Silicate Glasses and Melts: Properties and Structure.Elsevier. 550ppGoogle Scholar
2. Kress, V.C., Carmichael, I.S.E., Amer. Min., 73 (1988), 12671274.Google Scholar
3. Ottonello, G., Moretti, R., Marini, L., Zuccholini, M.V., Che. Geol. 174 (1985), 157179.Google Scholar
4. Schreiber, H.D., Kozak, S.J., Fritchman, A.L., Goldman, D.S., Schaeffer, H.A., Phys. Chem. Glasses, 27 (1986), 152177.Google Scholar
5. Goldman, D.S., Gupta, P.K., Amer., J. Ceram. Soc. (1983), 66, N°3, 188190.Google Scholar
6. Cook, G.B., Cooper, R.F., Wu, T., J. Non-Cryst. Solids, 120 (1990), 207222.Google Scholar
7. Cooper, R.F., Fanselow, J.B., Poker, D.B., Geochim. Cosmochim. Acta., 601 (1996), 32533265.Google Scholar
8. Cook, G.B., Cooper, R.F., Amer. Min., 85 (2000), 397406.Google Scholar
9. Magnien, V., Neuville, D.R., Cormier, L., Roux, J., Hazemann, J-L, de Ligny, D., Pascarelli, S., Vickridge, I., Pinet, O., Richet, P., Geochim. Cosmochim. Acta., 72 (2008), 21572168.Google Scholar
10. Yun, Y.H., Bray, P.J., J. Non-Cryst Solids (1978), 27, 363 Google Scholar
11. Sen, S., Xu, Z., Stebbins, J.F., J. Non-Cryst Solids (1998), 226, 2940.Google Scholar
12. Martens, R., Müller-Warmuth, W., J. Non-Cryst. Solids (2000), 265, 167175.Google Scholar
13. Magnien, V., Neuville, D.R., Cormier, L., Mysen, B.O., Briois, V., Belin, S., Pinet, O., Richet, P., Chem. Geol., 213 (2004), 253263.Google Scholar
14. Magnien, V., Neuville, D.R., Cormier, L., Roux, J., Hazemann, J-L., Pinet, O., Richet, P., J. Nucl. Mat., 352 (2006), 190195.Google Scholar
15. Wilke, M., Farges, F., Petit, P-E., Brown, G.E. Jr, Martin, F., Amer. Mineral., 86 (2001), 714730.Google Scholar
16. Berry, A.J., St.C. O'Neill, H., Jayasuriya, K.D., Campbell, S.J., Foran, G.J., Amer. Mineral., 88 (2003), 967977.Google Scholar
17. Wilson, A.D.. Analyst, 851 (1960), 823827.Google Scholar
18. Neuville, D.R., Richet, P., Geochim. Cosmochim. Acta, 55 (1991), 10111021.Google Scholar
19. Sipp, A., Neuville, D.R., Richet, P.,. J. Non-Cryst. Solids 211/3 (1997), 281293.Google Scholar
20. Bouhifd, M.A., Richet, P., Besson, P., Roskosz, M., Ingrin, J., Earth and Planetary Science Letters, 218 (2004), 3144.Google Scholar
21. Richet, P., Gillet, Ph., Pierre, A., Bouhifd, A., Daniel, I., Fiquet, G., J. Appl. Phys. 74 (1993), 54515456.Google Scholar
22. Neuville, D.R., Cormier, L., de Ligny, D., Roux, J., Flank, A-M., Lagarde, P., Amer. Min., 93 (2008), 228234.Google Scholar
23. Proux, O., Biquard, X., Lahera, X. E., Menthonnex, J.-J, Prat, A., Ulrich, O., Soldo, Y., Trévisson, P., Kapoujvan, G., Perroux, G., Taunier, P., Grand, D., Jeantet, P., Deléglise, M., Roux, J.-P., Hazemann, J.-L., Phys. Scripta, 115 (2005), 970973.Google Scholar
24. Winterer, M., J. Phys., IV, C2, (1997), 243244.Google Scholar
25. Mysen, B.O., Seifert, F.A., Virgo, D., Amer. Mineral., 65 (1980), 867884.Google Scholar
26. Munoz, M., Ph D thesis, Université de Marne-la-Vallée (2003).Google Scholar
27. Sen, S., J. Non-Cryst Solids (1999), 253, 8494.Google Scholar
28. Stebbins, J.F., Chem. Geol. (2008), 256, 8091 Google Scholar