Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T13:59:04.794Z Has data issue: false hasContentIssue false

Irradiated Microstructures of Magnesium Aluminate Spinel and their Controlling Factors

Published online by Cambridge University Press:  15 February 2011

C. Kinoshita
Affiliation:
Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812-8581, c.k.tne@mbox.nc.kyushu-u.ac.jp
S. Matsumura
Affiliation:
Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812-8581
K. Yasuda
Affiliation:
Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812-8581
T. Soeda
Affiliation:
Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812-8581
M. Noujima
Affiliation:
Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812-8581
Get access

Abstract

This paper reviews our recent progress in study on the strong resistance of magnesium aluminate spinel to void swelling during irradiation, along with the related characteristic features of its radiation damage. Comparative experimental results on irradiated microstructures and mechanical properties in magnesium aluminate spinel and alpha-alumina are shown in terms of controlling factors of radiation resistance of the former crystal. It is experimentally shown that structural vacancies due to non-stoichiometry provide effective recombination sites for displaced cations to suppress the formation of interstitial loops. Decreased formation of interstitial loops enhances the further recombination of interstitials and vacancies and thereby the formation of voids.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Clinard, F. W. Jr., J. Nucl. Mater. 85&86, 393 (1979).Google Scholar
2. Parker, C. A., Hobbs, L.W., Russell, K. C. and Clinard, F. W. Jr, J. Nucl. Mater. 133–134, 741 (1985).Google Scholar
3. Nakai, K., Fukumoto, K. and Kinoshita, C., J. Nucl. Mater. 191–194, 63 (1992).Google Scholar
4. Sickafus, K. E., Larson, A. C., Yu, N., Nastasi, M., Hollenberg, G. W., Garner, F. A. and Bradt, R. C., J. Nucl. Mater. 219, 128 (1995).Google Scholar
5. Cooper, E. C., Hughes, C. D., Earl, W. L., Sickafus, K. E., Hollenberg, G. W., Garner, F. A. and Bradt, R. C., Mater. Res. Soc. Symp., 373, 413 (1995).Google Scholar
6. Hobbs, L. W. and Clinard, F. W. Jr., J. Phys. 41, C6232 (1980).Google Scholar
7. Zinkle, S. J., Nucl. Instr. and Meth. B 91, 234 (1994).Google Scholar
8. Clinard, F. W. Jr., Hurley, G. F. and Hobbs, L. W., J. Nucl. Mater. 108–109, 655 (1982).Google Scholar
9. Garner, F. A., Hollenberg, G. W., Hobbs, F. D., Ryan, J. L., Li, Z., Black, C. A. and Bradt, R. C., J. Nucl. Mater. 212–215, 1087 (1994).Google Scholar
10. Black, C. A., Garner, F. A. and Bradt, R. C., J. Nucl. Mater. 212–215, 1096 (1994).Google Scholar
11. Kinoshita, C., Fukumoto, K., Fukuda, K., Garner, F. A. and Hollenberg, G. W., J. Nucl. Mater. 219, 143 (1995).Google Scholar
12. Youngman, R. A., Mitchell, T. E., Clinard, F. W. Jr., and Hurley, G. F., J. Mater. Res. 6, 2178 (1991).Google Scholar
13. Fukumoto, K., Kinoshita, C. and Garner, F. A., J. Nucl. Sci. and Technol. 32, 773 (1995).Google Scholar
14. Kinoshita, C. and Nakai, K., Japanese J. Appl. Phys. series 2, 105 (1985).Google Scholar
15. Veyssiere, P., J. Rabier and Grilhe, J., Phys. Stat. Sol. (a) 31, 605 (1975).Google Scholar
16. Veyssiere, P., Rabier, J., Garem, H. and Grilhe, J., Philos. Mag. 38, 61 (1978).Google Scholar
17. Wilks, R. S., Desport, J. A. and Bradley, R., Proc. Brit. Ceram. Soc. 7, 403 (1967).Google Scholar
18. Wilks, R. S., J. Nucl. Mater. 26, 137 (1968).Google Scholar
19. Barbat, D. J. and Tighe, N. J., J. Am. Ceram. Soc. 51, 611 (1968).Google Scholar
20. Fukumoto, K., Doctoral Thesis, Kyushu University (1994).Google Scholar
21. Lee, W. E., Jenkins, M. L. and Pells, G. P., Philos. Mag. A51, 639 (1985).Google Scholar
22. Cottrel, A. H. and Bilby, B. A., Proc. Phys. Soc. 62, 49 (1949).Google Scholar
23. Zinkle, S. J., J. Nucl. Mater. 219, 113 (1995).Google Scholar
24. Yasuda, K., Kinoshita, C., Morisaki, R. and Abe, H., Philos. Mag. A78, 583 (1998).Google Scholar
25. Ziegler, J. F., Biersack, J. P. and Littmark, U., The Stopping and Range of Ions in Solids, Pergamon, New York, 1985.Google Scholar
26. Zinkle, S. J. and Pells, G. P., J. Nucl. Mater. 253, 120 (1998).Google Scholar
27. Kinoshita, C., J. Nucl. Mater., 191–194, 67 (1992).Google Scholar
28. Yasuda, K., C. Kinoshita and Izumi, K., These proceedings.Google Scholar