Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T06:52:53.711Z Has data issue: false hasContentIssue false

Ising Model Simulations Of Impurity Trapping in Silicon

Published online by Cambridge University Press:  15 February 2011

George H. Gilmer*
Affiliation:
Bell Laboratories Murray Hill, New Jersey 07974
Get access

Abstract

Laser annealing experiments on silicon have shown that rapid solidification can trap large amounts of certain impurities in the crystal lattice. Concentrations that exceed the equilibrium solubility limits by several orders of magnitude have been obtained. In this paper we discuss the impurity trapping process using Monte Carlo simulation data from the kinetic Ising model. The dependence of the impurity concentration in the crystalon the solidification rate is calculated. The simulation data are compared with recent laser annealing results for bismuth and indium. Excellent agreement between the model and the bismuth experiments is obtained. The larger trapping rate on the (111) relative to the (100) orientation is found to be caused by the slower crystallization kinetics on the (111) face. Similar results are obtained for indium, although the difference in trapping on the (111) and (100) faces is somewhat smaller in the model than in the experiment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Laser and Electron-Beam Interactions with Solids, Appleton, B. R. and Celler, G. K., Eds. (Elsevier, Amsterdam, 1982)Google Scholar
(2)Laser and Electron Beam Processing of Materials, White, C. W. and Peercy, P. S., Eds. (Academic Press, New York, 1980)Google Scholar
(3)Cullis, A. G., Webber, H. C., Poate, J. M., and Simons, A. L., Appl. Phys. Lett. 36, 320 (1980;)Google Scholar
3(b)White, C. W., Wilson, S. R., Appleton, B. R., and Young, F. W., Jr., J. Appl. Phys. 51, 738 (1980);Google Scholar
3(c)Cullis, A. G., Hurle, D. T. J., Webber, H. C., Chew, N. G., Poate, J. M., Baeri, P., and Foti, G., Appl. Phys. Lett. 38, 642 (1981).Google Scholar
(4)Hall, R. N., J. Phys. Chem. Solids 3, 63 (1957).Google Scholar
(5)Jackson, K. A., Can. J. of Phys. 36, 683 (1958).Google Scholar
(6)Trainor, A. and Bartlett, B. E., Solid State Electron. 2, 106 (1961).Google Scholar
(7)Holmes, P. J., J. Phys. Chem. Solids 24, 1239 (1963).Google Scholar
(8)Voronkov, V. V. and Chernov, A. A., Soy. Phys.-Cryst. 12, 186 (1967).Google Scholar
(9)Baker, J. C. and Cahn, J. W., Acta. Met. 17, 575 (1969).Google Scholar
(10)Chernov, A. A., Soy. Phys.-Uspekhi 13, 101 (1970).Google Scholar
(11)Temkin, D. E., Soy. Phys.-Cryst. 17, 405 (1972).Google Scholar
(12)Jackson, K. A., Gilmer, G. H., and Leamy, H. J., in:Ref. 2, p.104.Google Scholar
(13)Wood, R. F., Appl. Phys. Lett. 37, 302 (1980);Google Scholar
13aand Phys. Rev. B25, 2786 (1982).Google Scholar
(14)Cline, H. E., J. Appl. Phys. 53 (1982).Google Scholar
(15)Aziz, M., J. Appl. Phys. 53, 1158 (1982).Google Scholar
(16)de Kock, A. J. R., in: Crystal Growth and Materials, Kaldis, E. and Scheel, H. J., Eds. (North-Holland, Amsterdam, 1977).Google Scholar
(17)Cahn, J. W., Coriell, S. R. and Boettinger, W. J., in: Ref. 2, p.81.Google Scholar
(18)Baeri, P., Foti, G., Poate, J. M., Campisano, S. U. and Cullis, A. G., Appl. Phys. Lett. 38, 800 (1981).Google Scholar
(19)Poate, J. M., in: Ref. 1, p.121.Google Scholar
(20)Hurle, D. J. T., in: Crystal Growth: An Introduction, Hartman, P., Ed. (North-Holland, Amsterdam, 1973), p.210 .Google Scholar
(21) Several reviews treat the roughening transition and its effect on kinetics. See: Weeks, J. D., in: Ordering in Strongly Fluctuating Condensed Matter Systems, Riste, T., Ed. (Plenum, 1980), p. 293;Google Scholar
21avan der Eerden, J. P., Bennema, P., and Cherepanova, T. A., in: Progress in Crystal Growth and Characterization, Pamplin, B. R., Ed. (Pergamon, Oxford, 1979), Vol. 3, p. 219;Google Scholar
21b and Weeks, J. D. and Gilmer, G. H., Adv. Chem. Phys. 40, 157 (1979).Google Scholar
(22)Thurmond, C. D. and Kowalchik, M., Bell Syst. Technical J. 39, 169 (1960);Google Scholar
22aThurmond, C. D. and Struthers, J. D., J. Phys. Chem. 57, 831 (1953).Google Scholar
(23)Broughton, J. Q., Bonissent, A. and Abraham, F. F., J. Chem. Phys. 74, 4029 (1981);Google Scholar
23aBroughton, J. Q. and Abraham, F. F., Chem. Phys. Lett. 71, 456 (1980).Google Scholar
(24)Hill, T. L., Introduction to Statistical Thermodynamics (Addison-Wesley, Reading, 1960) p.371.Google Scholar
(25)Gilmer, G. H., J. Crystal Growth 35, 15 (1976);Google Scholar
25a and J. Crystal Growth 49, 465 (1980).Google Scholar
(26)Ciszek, T. F., J. Cryst. Growth 10, 263 (1971);Google Scholar
26aEdwards, W. D., Can. J. Phys. 38, 439 (1960);Google Scholar
26bAbe, T., J. Cryst. Growth 24/25, 463 (1974).Google Scholar
(27)van Enckevort, W. J. P. and van der Eerden, J. P., J. Cryst. Growth 47, 501 (1979).Google Scholar
(28)Gilmer, G. H. and Jackson, K. A., in: Crystal Growth and Materials, Kaldis, E. and Scheel, H. J., Eds. (North-Holland, Amsterdam, 1977), p. 79.Google Scholar
(29)Hillig, W. B., Acta. Met. 14, 1968 (1966).Google Scholar
(30)Abraham, F. F., Tsai, N.-H., and Pound, G. M., Surf. Sci. 83, 406 (1979).Google Scholar
(31)Gilmer, G. H., unpublished.Google Scholar
(32)Murgai, A., Gatos, H. C., and Witt, A. F., J. Electrochem. Soc. 123, 224 (1976).Google Scholar