Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T06:51:34.975Z Has data issue: false hasContentIssue false

Kinetic and Thermodynamic Aspects of the Bainite Reaction in a Silicon Steel

Published online by Cambridge University Press:  21 February 2011

G. Papadimitriou
Affiliation:
Department of Mining and Metallurgy, National Technical University of Athens, 42 Patission Street, Athens, Gr 147
J.M.R. Genin
Affiliation:
Department of Mining and Metallurgy, National Technical University of Athens, 42 Patission Street, Athens, Gr 147 Département des sciences et techniques des Matériaux, Institut des Sciences de l'Ingénieru, Université de Nancy 1, Vandoeuvre - Nancy, France 54500
Get access

Abstract

The bainite reaction in an Fe - 3.85 wt pct Si - 0.9 wt pct C steel is studied by several experimental techniques in the range of 250–450°C.

The high silicon content prevents the formation of cementite, so that the reaction is separated to two clearly distinct stages. In the primary stage ferrite forms alone, except at temperatures lower than 310°C where some carbides precipitate in it, and austenite becomes enriched in carbon. In the secondary stage occurring only above 400°C, the enriched austenite decomposes to ferrite and an unknown silicon carbide.

The microstructure, the enrichment of the austenite and the overall reaction kinetics of the two stages are studied and are found to be consistent with a displacive mechanism of the bainite reaction.

A tentative model, accounting for the competition of shear and diffusion, is proposed in order to fit our experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hehemann, R.F., Kinsman, K.R. and Aaronson, H.I.: Metall. Trans., 1972, 3, p. 1077.Google Scholar
2. Wever, F. and Lange, E.: Mitt. Kaiser Wilhelm Inst., Eisenforsch, 1932, 14, p. 71.Google Scholar
3. Mehl, R.F.: Hardenability of Alloy Steels, ASM, Metals Park, OH, 1939, p. 1.Google Scholar
4. Oblak, J.M. and Hehemann, R.F.: Transformation and Hardenability in Steels, Climax Molybdenum Co., Ann Arbor, MI, 1967, p. 15.Google Scholar
5. Pickering, F.B.: Transformation and Hardenability in Steels, Climax Molybdenum Co., Ann Arbor, MI, 1967, p. 109.Google Scholar
6. Aaronson, H.I. and Wells, C.: Trans. AIME, 1956, 206, p. 1216.Google Scholar
7. LeHouiller, R., Begin, G. and Dubé, A.: Met. Trans., 1971, 2, p. 2645.Google Scholar
8. Matas, S.J., Hehemann, R.F.: Trans. Met. Soc., AIME, 1961, 221, p. 179.Google Scholar
9. Deliry, J.: Mem. Sc. Rev. Met., 1965, LXII, No. 7–8, p. 527.Google Scholar
10. Pomey, J.: Mem. Sc. Rev. Met., 1966, LXIII, No. 6, p. 509.Google Scholar
11. Schissler, J.M.: Thesis, Nancy, 1972.Google Scholar
12. Papadimitriou, G., Courrier, R., Genin, J.M.: C.R. Ac. Sc. Paris, 1973, 276C, p. 739.Google Scholar
13. Sandvik, B.P.J.: Met. Trans., 1982, 13A, p. 777.Google Scholar
14. Papadimitriou, C.: Thesis, Nancy, 1973.Google Scholar
15. Sandvik, G.P.J.: Met. Trans., 1982, 13A, p. 789.Google Scholar
16. Schissler, J.M. and Metauer, G.: C.R. Acad. Sc., 1970, 270C, p. 1162.Google Scholar
17. Owen, W.S.: J. Iron Steel Inst., 1951, 167, p. 117.Google Scholar
18. Bain, E.C. and Paxton, H.W.: Les éléments d'addition dans l'acier, Dunod Paris, 1968.Google Scholar
19. Le Caer, G., Simon, A., Lorenzo, A. and Genin, J.M.: Phys. Stat. Sol. (a), 1971, 6, p. 197.Google Scholar
20. Fruchart, R., Bernas, H. and Campbell, I.A.: J. Phys. Chem. Solids, 1967, 22, p. 473.Google Scholar
21. Genin, J.M., Le Caer, G. and Simon, A.: Proc. 5th Inst. Conf. on Mössbauer Spectroscopy, p. 318, Czechslovak Atom En. Commission, Bratislava, 1973.Google Scholar
22. Zwell, L., Ridle, N. and SCuart, H.: Trans. AIME, 1969, 245, p. 1834.Google Scholar
23. Ruhl, R.C. and Cohen, M.: Trans. AIME, 1969, 245, p. 241.Google Scholar
24. Adda et, Y. Philibert, J.: La diffusion dans les solides, Tome 2, 1966, Presses Uniersitaires de France, Paris.Google Scholar
25. Huang, Der-Hung and Thomas, G.: Met. Trans., 1977, 8A, p. 1661.Google Scholar
26. Bhadeshia, H.K.D.H. and Edmonds, D.V.: Met. Trans., 1979, 10A, p. 895.Google Scholar
27. Bhadeshia, H.K.D.H.: Acta Met., 1980, 28, p. 1103.Google Scholar
28. Goodenow, R.H., Matas, S.J. and Hehemann, R.F.: Trans. AIME, 1963, 227, p. 651.Google Scholar
29. Kaufman, L., Radcliffe, S.V. and Cohen, M.: Decomposition of austenite by diffusional processes, p. 313, Interscience, New York, 1962.Google Scholar
30. Aaronson, H.I., Domain, H.A. and Pound, G.M.: Trans. AIME, 1966, 236, p. 753.Google Scholar
31. Bhadeshia, H.K.D.H. and Edmonds, D.V.: Acta Met., 1980, 28, p. 1265.Google Scholar
32. Zener, C.: Trans. AIME, 1946, 167, p. 50.Google Scholar
33. Diffusion Data, 1970, 4, p. 32.Google Scholar
34. Speich, C.R.: Decomposition of austenite to diffusional processes, p. 353, Interscience, New York, 1962.Google Scholar